Sharif Digital Repository / Sharif University of Technology
    • [Zoom In]
    • [Zoom Out]
  • Page 
     of  0
  • [Previous Page]
  • [Next Page]
  • [Fullscreen view]
  • [Close]
 
یک الگوریتم بهینه سازی جدید برای تولید برقی قابل اعتماد مبتنی بر انرژی باد، خورشید و سلول سوختی
خیامیم، تارا Khayyamim, Tara

Cataloging brief

یک الگوریتم بهینه سازی جدید برای تولید برقی قابل اعتماد مبتنی بر انرژی باد، خورشید و سلول سوختی
پدیدآور اصلی :   خیامیم، تارا Khayyamim, Tara
ناشر :   صنعتی شریف
سال انتشار  :   1393
موضوع ها :   انرژی خورشیدی Solar Energy انرژی باد Wind Energy الگوریتم ژنتیک Genetic Algorithm پیل...
شماره راهنما :   ‭55-46957

Find in content

sort by

Bookmark

  • Chapter 1: (11)
  • Introduction and Literature Review (11)
    • 1.1. Introduction to Renewable Energy Resources (12)
      • 1.1.1. Solar Power (15)
      • 1.1.2. Wind Power (17)
    • 1.2. Hybridization (21)
      • 1.2.1. Integration Schemes (21)
        • 1.2.1.1. DC-Coupled Systems (22)
        • 1.2.1.2. AC-Coupled Systems (23)
        • 1.2.1.3. Hybrid-Coupled Systems (24)
      • 1.2.2. Unit Sizing and Technology Selection (25)
      • 1.2.3. Storage (26)
      • 1.2.4. Control and Manage Energy (29)
        • 1.2.4.1. Centralized Control Model (30)
        • 1.2.4.2. Distributed Control Model (31)
        • 1.2.4.3. Hybrid Centralized and Distributed Control Model (32)
    • 1.3. Sample Applications (34)
      • 1.3.1. Stand-alone Hybrid Generation combining Solar photovoltaic/Wind turbine and Fuel cell System (34)
      • 1.3.2. Regional integration of renewable energy systems - The role of hybrid energy systems for small communities (36)
      • 1.3.3. Economic evaluation of hybrid renewable energy systems for rural electrification in Iran— a case study (39)
    • 1.4. Conclusion (41)
  • Chapter 2: (42)
  • Modeling Renewable Energy Resources (42)
    • 2.1. PV model (43)
      • 2.1.1. Parameters (43)
      • 2.1.2. Interfaces (44)
      • 2.1.3. Formulation (44)
    • 2.2. Wind Turbine Model (45)
      • 2.2.1. Parameters (45)
      • 2.2.2. Interfaces (45)
      • 2.2.3. Formulation (45)
    • 2.3. Fuel Cell Model (47)
      • 2.3.1. Parameters (47)
      • 2.3.2. Formulation (48)
      • 2.3.3. Dynamics of the cell (50)
    • 2.4. Numerical Example (51)
      • 2.4.1. PV (51)
      • 2.4.2. WT (52)
      • 2.4.3. FC Example (53)
    • 2.5. Conclusion (55)
  • Chapter 3: (56)
  • Optimization Method (56)
    • 3.1. Introduction (57)
    • 3.2. Genetic Algorithm (GA) (58)
    • 3.3. Typical Genetic Algorithm (29) (60)
      • 3.3.1. Initialization (61)
      • 3.3.2. Fitness Evaluation (61)
      • 3.3.3. Selection (61)
        • 3.3.3.1. Roulette wheel selection (61)
        • 3.3.3.2. Tournament selection (62)
      • 3.3.4. Crossover (62)
        • 3.3.4.1. Single-point crossover (62)
        • 3.3.4.2. Multiple-point crossover (62)
      • 3.3.5. Mutation (63)
    • 3.4. My Algorithm (64)
      • 3.4.1. Initialization (65)
      • 3.4.2. Diversity Control (65)
      • 3.4.3. Scaling (66)
      • 3.4.4. Selection (66)
      • 3.4.5. Death (66)
      • 3.4.6. Fitness Evaluation (66)
      • 3.4.7. Elitism (66)
      • 3.4.8. Random Search (67)
      • 3.4.9. Trim GA (67)
    • 3.1. (67)
    • 3.5. Proposed Algorithm (68)
    • 3.6. Fuel Cell Parameters Optimization (69)
  • Chapter 4: (73)
  • Scenarios and Optimization Results (73)
    • 4.1. Economic analysis (74)
      • 4.1.1. Formulation (75)
      • 4.1.2. PV Costs (76)
      • 4.1.3. WT Costs (76)
      • 4.1.4. FC Costs (78)
    • 4.2. Scenario 1 (80)
      • 4.2.1. Solar (80)
      • 4.2.2. Wind (82)
      • 4.2.3. Solar and Wind (85)
      • 4.2.4. Solar, Wind and Fuel Cell (90)
    • 4.3. Scenario 2 (92)
    • 4.4. Scenario 3 (100)
    • 4.5. Conclusion and Future Work (106)
  • References (108)
Loading...