Sharif Digital Repository / Sharif University of Technology
    • [Zoom In]
    • [Zoom Out]
  • Page 
     of  0
  • [Previous Page]
  • [Next Page]
  • [Fullscreen view]
  • [Close]
 
مدل سازی ساختاری و شبیه سازی عددی رفتار مکانیکی عروق کرونر در حین استنت گذاری و رشد پس از آن
فریدون نژاد، بهروز Fereidoonnezhad, Behrooz

Cataloging brief

مدل سازی ساختاری و شبیه سازی عددی رفتار مکانیکی عروق کرونر در حین استنت گذاری و رشد پس از آن
پدیدآور اصلی :   فریدون نژاد، بهروز Fereidoonnezhad, Behrooz
ناشر :   صنعتی شریف
سال انتشار  :   1395
موضوع ها :   تصلب شرایین Atherosclerosis خرابی Damage رشد Growth انسداد مجدد Restenosis رفتار...
شماره راهنما :   ‭58-50614

Find in content

sort by

Bookmark

  • Declaration of Authorship
  • Abstract (4)
  • Acknowledgements (6)
  • Introduction (22)
    • Overview of the arterial wall (22)
    • Cardiovascular diseases and treatments (28)
    • In-stent restenosis (31)
    • Scope and objectives (31)
    • Outline of thesis (32)
  • Preliminaries from Nonlinear Solid Mechanics (34)
    • Introduction (34)
    • Kinematics (35)
      • Kinematics of finite deformation (35)
      • Kinematics of finite growth (37)
    • Balance equations (38)
      • Master balance law (38)
      • Balance of mass (40)
      • Balance of linear and angular momentum (43)
      • Balance of internal energy (First law of thermodynamics) (44)
      • Balance of entropy (Second law of thermodynamics) (46)
      • Stress measures (47)
    • Constitutive equations (50)
      • Principles for the construction of constitutive equations (50)
      • Hyperelastic materials (53)
    • Finite element implementation (54)
      • Elasticity tensor (55)
      • User subroutines in Abaqus (56)
  • Constitutive Modeling of Arterial Tissue (58)
    • Introduction (58)
    • Hyperelasic constitutive model for physiological loadings (59)
    • Inelasic constitutive model for supra–physiological loadings (61)
      • Pseudo-elastic damage model (63)
      • Stress response and thermodynamic consistency (65)
      • Elasticity tensor (67)
      • Energy functions and damage variables (69)
    • Constitutive parameter identification (71)
      • Experimental data (71)
      • Material and damage parameters (74)
    • Finite element implementation and verification (78)
      • Implementation (78)
      • Verification (80)
    • Finite element simulation of arterial clamping (82)
      • Residual stress (82)
      • Geometry and material properties (82)
      • Loading and boundary conditions (83)
      • Mesh convergence (84)
      • Results (85)
      • Effect of material inelasticity (85)
      • Effect of clamp geometry (87)
    • Conclusion (92)
  • Isotropic Damage-induced Growth in Coronary Artery (98)
    • Introduction (98)
    • Modeling of finite growth (101)
      • Kinematics (101)
      • Mass balance equation (103)
      • Thermodynamic consistency (105)
      • Specific form of the free-energy function (107)
      • Micromechanically motivated evolution for the mass (108)
      • Specific form for the growth tensor and its evolution (111)
    • Finite element implementation (114)
      • Stress tensor (115)
      • Elasticity tensor (116)
      • Solution algorithm (118)
      • Verification (119)
    • Parameter study of the growth model (119)
    • Finite element simulation of restenosis after angioplasty (121)
    • Conclusion (124)
  • Anisotropic Damage-induced Growth in Coronary Artery (126)
    • Introduction (126)
    • Modeling of finite growth (126)
    • Specific form of growth tensor and its evolution (127)
    • Finite element implementation (129)
      • Stress tensor (129)
      • Elasticity tensor (131)
      • Solution algorithm (132)
    • A semi–analytical solution for anisotropic damage–induced growth of an artery wall (132)
      • Residual stress and physiological state (134)
      • Damage due to the increased inner pressure (138)
      • Damage–induced growth of the artery (138)
      • Results (141)
    • Conclusion (143)
  • Summary and Conclusions (144)
    • Summary (144)
    • Conclusions (145)
    • Future research directions (148)
  • Publications (152)
  • Explicit forms of the stress and elasticity tensors in Chapter 3 (154)
  • Derivation of equation (4.24) (160)
  • Derivation of the elasticity tensor in equation (4.54) (164)
  • Explicit expressions for the elasticity tensors in Chapter 4 (166)
  • Bibliography (168)
Loading...