Please enable javascript in your browser.
Page
of
0
شبیه سازی عددی تاثیر نیروی های مغناطیسی و الکتریکی بر روی عملکرد فیلترهای دانه ای خیس
صباغیان، سینا Sabbaghian, Sina
Cataloging brief
شبیه سازی عددی تاثیر نیروی های مغناطیسی و الکتریکی بر روی عملکرد فیلترهای دانه ای خیس
پدیدآور اصلی :
صباغیان، سینا Sabbaghian, Sina
ناشر :
صنعتی شریف
سال انتشار :
1397
موضوع ها :
نانوذرات Nanoparticles ترشوندگی Wetting پالیدن Filtration فیلترهای دانه ای خیس Wet...
شماره راهنما :
58-52118
Find in content
sort by
page number
page score
Bookmark
AUTHOR'S DECLARATION
(3)
Abstract
(4)
Acknowledgements
(5)
Dedication
(6)
List of Figures
(11)
List of Tables
(16)
Chapter 1 Introduction
(17)
1.1 Granular Filters
(17)
1.1.1 Granular Filtration
(18)
1.1.2 Granular Filtration Versus Fibrous Filtration
(20)
1.1.3 Granular Filtration for Gas Cleaning
(22)
1.1.4 Savannah River Plant (SRP) Sand Filters
(22)
1.1.5 Ducon Filter
(23)
1.1.6 Wet Scrubber Filters
(24)
1.2 Aerosol Filtration Mechanisms
(26)
1.3 Evaluation of Filtration Performance
(28)
1.4 Existing Theories of Filtration
(30)
1.5 Pressure Drop and Slipping Effect
(32)
1.6 Regimes of Two-Dimensional Flow Around a Bluff-Body
(36)
1.6.1 Laminar Vortex Shedding, 40
(38)
1.6.2 Subcritical Regime, 350
(39)
1.6.3 Summary of Flow Regime
(40)
1.7 Vortex Shedding
(40)
1.8 The Mechanism of Vortex Shedding
(41)
1.9 Vortex-Shedding Frequency
(42)
1.10 Dependence of Pressure and Force on Flow Characteristics
(44)
1.11 Lift and Drag Concepts
(48)
1.11.1 Drag
(52)
1.12 Multi-phase Flow
(53)
1.12.1 Multiphase Flow Models
(54)
1.12.2 Conservative Level Set Method for Two Phase Flow
(56)
1.12.3 Incompressible Two-Phase Flow
(57)
1.13 Electrostatics and Electromagnetics
(59)
1.13.1 Electrostatics
(59)
1.13.1.1 Maxwell`s First Equation (Electrostatics)
(62)
1.13.2 Electromagnetics
(63)
1.13.2.1 Maxwell Equations
(64)
1.14 Wetting and Surface Force
(65)
1.15 Thesis Overview
(70)
1.16 Literature Review
(71)
Chapter 2 Governing Equations and Numerical Scheme
(75)
2.1 Two- Phase Flow
(75)
2.1.1 The Two-Phase Flow, Level Set, and Phase Field Interfaces
(75)
2.1.1.1 Level Set and Phase Field Equations
(75)
2.1.1.2 Using the Level Set Method
(76)
2.1.1.3 The Surface Tension Force for the Level Set Method
(76)
2.1.1.4 Conservative and Non-Conservative Formulations
(77)
2.1.1.5 Phase Initialization
(77)
2.2 Particle Tracking Methodology
(78)
2.2.1 Particle Capture Mechanism
(78)
2.2.1.1 Direct Interception
(79)
2.2.2 Inertia Impaction
(80)
2.2.2.1 Brownian Diffusion
(82)
2.2.2.2 Other Mechanisms
(85)
2.2.3 Lagrangian Particle Tracking Technique
(86)
2.2.3.1 Equation of Particle Motion (EOM)
(87)
2.2.3.2 Drag Force
(87)
2.2.3.3 Brownian Force
(89)
2.2.3.4 Staffman Lift Force
(90)
2.2.3.5 Gravity Force
(92)
2.2.3.6 Dielectrophoretic Force
(92)
2.2.3.7 Magnetophoretic Force
(93)
2.3 Numerical Scheme
(93)
2.3.1 Grid’s Quality
(93)
2.3.2 Numerical Method
(94)
2.3.2.1 Finite Element Method
(94)
2.4 Flow Field Validation
(96)
2.4.1 A Single Square Fiber without Particle Tracking
(96)
2.5 Simulation Setups with Particle Tracking
(98)
2.5.1 Flow Field Calculation
(98)
2.5.2 Solution Algorithm
(100)
2.5.3 Boundary Conditions
(102)
2.5.4 Particle Tracking Validation
(102)
2.6 Geometry of the Study
(105)
2.7 Mesh Quality
(106)
Chapter 3 Results
(108)
3.1 On the Importance of Reynolds Number on Particle Deposition Efficiency without Electrophoretic and Magnetophoretic Force
(108)
3.1.1 Dry Cylinder
(108)
3.1.2 Wet Cylinder
(113)
3.2 On The Importance of Electrostatic on Particle Deposition
(120)
3.3 On The Importance of Electromagnetic Field on Particle Deposition
(121)
3.4 On the Importance of Electromagnetic and Electrostatic Fields on Particle Deposition
(122)
Chapter 4 Conclusion
(127)
Refrences
(130)