Loading...
				
	
				
	
								
					
				
				
	
				
															
An Application of Stochastic Optimal Control in Solving the Mean-variance Portfolio Selection Problem
Tabatabaee Habib abadi, Fattaneh | 2013
				
											614
									
				Viewed
			
		- Type of Document: M.Sc. Thesis
- Language: Farsi
- Document No: 44611 (02)
- University: Sharif University of Technology
- Department: Mathematical Sciences
- Advisor(s): Farhadi, Hamidreza
- Abstract:
- In this essay, by putting in the framework of linear-quadratic optimal control (LQ),we study and solve the mean-variance portfolio selection problem. Two models will be studied in our work; in one we assume that the price process satisfies a diffusion stochastic differential equation, while in the second model, we assume it to satisfy a jump-diffusion stochastic differential equation. In both models, a formula for the efficient frontier is obtained. This essay is mainly obtained from the works of the following articles and books: 
 1)X.Y. Zhou and D. Li, Continuous-Time Mean-Variance Portfolio Selection:A Stochastic LQ Framework. Applied Mathematics and Optimization. 42(2000), 19–33.
 2)T.Liu,J.ZhaoandP.Zhao,PortfolioProblemsBasedonJump-DiffusionMod- els. Filomat. Vol. 26, No 3 (2012), 573–583.
 3)J. Yong and X.Y Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag, New York, 1999.
 4)W.H. Fleming and H.M. Soner, Controlled Markov Processes and ViscositySolutions. Springer-Verlag, 1993
- Keywords:
- Mean-Variance Method ; Portfolio ; Efficient Frontier ; Stochastic Linear Quadratic Control ; Jump-Diffusion Model
 
		
 Digital Object List
 Digital Object List
         محتواي کتاب
 
	        		
	        		
       				
	        		محتواي کتاب
	        	 Bookmark
 Bookmark