Loading...
- Type of Document: M.Sc. Thesis
- Language: Farsi
- Document No: 46588 (02)
- University: Sharif University of Technology
- Department: Mathematical Sciences
- Advisor(s): Gholamzadeh Mahmoudi, Mohammad
- Abstract:
- This master’s thesis has two major parts. The first part which includes chapters 1 to 8, describes the article A. Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math. 1, (1966)pp. 116-132, and expresses important facts about the Witt ring W(K) of quadratic forms over an arbitrary field K of characteristic unequal to 2. Among those, it is shown that the order of each element in the additive group of W(K) is a power of 2, the Witt ring doesn’t have any zero divisor of odd dimension and a necessary and sufficient condition for W(K) to be an integral domain is given. The connections between the square class number of a field and the cardinality of its Witt ring and, providing some inequalities which hold between various invariants are other parts of this note. Besides, we study the class of even-dimensional quadratic forms which form a aximal ideal in W(K) and is denoted by M and, it is shown that M2 coincides with the subset of all elements of M whose discriminants are trivial.Also, M3 coincides with the subset of all elements of M2 whose class of associated Clifford algebra in the Brauer group of K is trivial.Beside the above it is shown that the level of every non formally real field is a power of 2 and for each n 2 N, an example of a field of level 2n is given. The most fundamental theorem of this part is the so-called Pfister’s local-global principle which provides a complete classification of torsion elements of the additive group of W(K).In second part, we express an application of Pfister’s local-global principle by which the relationship between Hilbert’s seventeenth problem and Pfister’s local-global principle is studied. Finally, with the aid of this principle, we express a proof of Hilbert’s seventeenth problem in the case of one variable. The remarkable feature of the proof is that we don’t use the fundamental theorem of algebra
- Keywords:
- BRAUER GROUP ; Clifford Algebra ; Quadratic Forms ; Pfister Forms ; Witt Ring ; Field Level ; Formally Real Field ; Pfister's Local-Global Principle ; Hilbert Seventeenth Problem
-
محتواي کتاب
- view
- کلیات
- قضایای نمایش کسلز-فیستر
- فرمهای ضربی، سطح میدان
- ویژگیهای ساختاری حلقهی ویت
- ایدهآل بنیادی حلقهی ویت و ردهی براوئر جبر کلیفورد
- اصل موضعی-سرتاسری فیستر
- عدد ردهی مربعی، ناوردای یو، سطح میدان و عدد فیثاغورسی
- رادیکال جیکوبسون و یکالهای حلقهی ویت
- مسألهی هفدهم هیلبرت
- بحثی در رابطه با ترسیمات هندسی
- حالتی خاص از مسألهی هفدهم و اثباتی زیبا از هیلبرت
- صورت کلی مسألهی هفدهم هیلبرت
- مسألهی هفدهم هیلبرت و اصل موضعی-سرتاسری فیستر
- کتاب نامه
- نمایه
