Loading...

Kinetic pie delaunay graph and its applications

Abam, M. A ; Sharif University of Technology | 2012

686 Viewed
  1. Type of Document: Article
  2. DOI: 10.1007/978-3-642-31155-0_5
  3. Publisher: 2012
  4. Abstract:
  5. We construct a new proximity graph, called the Pie Delaunay graph, on a set of n points which is a super graph of Yao graph and Euclidean minimum spanning tree (EMST). We efficiently maintain the Pie Delaunay graph where the points are moving in the plane. We use the kinetic Pie Delaunay graph to create a kinetic data structure (KDS) for maintenance of the Yao graph and the EMST on a set of n moving points in 2-dimensional space. Assuming x and y coordinates of the points are defined by algebraic functions of at most degree s, the structure uses O(n) space, O(nlogn) preprocessing time, and processes O(n 2 λ 2s∈+∈2(n)β s + 2(n)) events for the Yao graph and O(n 2 λ 2s + 2(n)) events for the EMST, each in O(log 2 n) time. Here, λ s (n) = nβ s (n) is the maximum length of Davenport-Schinzel sequences of order s on n symbols. Our KDS processes nearly cubic events for the EMST which improves the previous bound O(n 4) by Rahmati et al. [1]
  6. Keywords:
  7. Euclidean minimum spanning tree ; kinetic data structures ; Pie Delaunay triangulation ; Yao graph ; Algebraic functions ; Davenport-Schinzel sequences ; Delaunay graph ; Delaunay triangulation ; Euclidean minimum spanning trees ; Preprocessing time ; Proximity graphs ; Super graph ; Algorithms ; Data structures ; Kinetics
  8. Source: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) ; Volume 7357 LNCS , 2012 , Pages 48-58 ; 03029743 (ISSN) ; 9783642311543 (ISBN)
  9. URL: http://link.springer.com/chapter/10.1007%2F978-3-642-31155-0_5