Loading...
Synthesis of Fe-TiC-Al2O3 hybrid nanocomposite via carbothermal reduction enhanced by mechanical activation
Razavi, M ; Sharif University of Technology
1394
Viewed
- Type of Document: Article
- DOI: 10.1016/j.ceramint.2010.09.013
- Abstract:
- In this study, the feasibility of the synthesis of Fe-TiC-Al 2O3 hybrid nanocomposite via mechanical activation followed by carbothermal reduction was investigated. The raw materials including ilmenite, carbon black and aluminum powder were milled in a high energy planetary ball mill. At different time intervals, samples were taken for characterization. After phase evaluation with XRD, some samples were heat treated in an atmosphere controlled tube furnace. Studies proved that increasing the milling time of the raw materials resulted in the formation of more amorphous phase and more active materials. Furthermore, investigations showed that after carbothermal reduction, the synthesized TiC crystallites were in the scale of nanometers and the lattice parameter had some deviation from the standard value. At higher heat treatment temperatures, the crystallite sizes increased, while the deviation from the standard lattice parameter decreased
- Keywords:
- Active material ; Aluminum powders ; Amorphous phase ; Heat treatment temperature ; High energy ; Hybrid nanocomposites ; Lattice parameters ; Mechanical activation ; Milling time ; Phase evaluation ; Planetary ball mill ; Standard values ; Time interval ; Tube furnaces ; XRD ; Amorphous materials ; Ball mills ; Carbon black ; Crystallites ; Ilmenite ; Lattice constants ; Nanocomposites ; Raw materials ; Titanium ; Titanium carbide ; Carbothermal reduction
- Source: Ceramics International ; Volume 37, Issue 2 , March , 2011 , Pages 443-449 ; 02728842 (ISSN)
- URL: http://www.sciencedirect.com/science/article/pii/S0272884210003627