Loading...

Calculating Runoff Coefficient of Urmia Lake Basin by Empirical Models and Remot Sensing (RS) Technology

Akbari, Mahdi | 2016

2397 Viewed
  1. Type of Document: M.Sc. Thesis
  2. Language: Farsi
  3. Document No: 49087 (09)
  4. University: Sharif University of Technology
  5. Department: Civil Engineering
  6. Advisor(s): Tajrishy, Masoud; Arasteh, Peyman
  7. Abstract:
  8. Estimation of runoff in the ungauged basins is a challenge for hydrologists. The main objective of this research is to produce runoff coefficient map using SCS-CN (1972) and Kennessey (1930) as empirical models to for Urmia Lake basin between for 2006-2011.Both SCS-CN and Kennessey methods use slope, land use, and soil permeability data to estimate surface runoff. Accuracy of each model is tested along with the observed runoff using the Root Mean Square Error (RMSE).Urmia Lake basin includes about 400,000 hectares irrigated land, which constitutes around 10 percent of the entire basin area. To exclude the anthropological activities from the estimations, methods were applied only for 28 upstream subbasins. In these subbasins,there are less agricultural activities, so the observed runoff data from hydrometry stations is equivalent to the natural runoff generation potential of the region.The mean annual runoff coefficient ,in the selected 28 subbasins, is 0.2 based on 2006 observed data. The mean annual runoff coefficient by Kennessy was also 0.2. However,SCS-CN method was extremely overestimating the annual surface runoff by the mean runoff coefficient of 0.6.Overall, Kennessey method was more accurate than SCS-CN in estimating the annual runoff in the Urmia Lake basin. This model has three default partial runoff coefficients based on slope, land cover and soil permeability. In this research Kennessey model is calibrated by observed data. The mean error (RMSE devided to mean of annual observed runoff coefficient) of the modeling during 2006-2011 is 135%. After calibration of Kennessey method, the accuracy of modeling was improved by 70% and correlation between observed and model runoff coefficients for validation years was boosted from 20% to 50%
  9. Keywords:
  10. Geographic Information System (GIS) ; Remote Sensing ; Lake Urmia Watershed ; Runoff Coefficient ; Soil Conservation Service Curve Number (SCS-CN)Method ; Platelet Rich Plasma (PRP) ; Wet Electrospining

 Digital Object List

 Bookmark

  • 1.abstract-final.pdf
  • 2.chapters-Final.pdf
    • 1- فصل اول: پیشگفتار
      • 1-1- مقدمه
      • 1-2- تعریف مسئله و هدف تحقیق
      • 1-3- معیار انتخاب روش تحقیق
      • 1-4- مراحل انجام تحقیق
      • 1-5- سؤالات تحقیق
      • 1-6- دامنه و فرضیات تحقیق
      • 1-7- مرور بر مطالب فصلها
    • 2- فصل دوم: مرور بر ادبیات موضوع
      • 2-1- مقدمه
      • 2-2- کلیات روش‌های تجربی مدل‌سازی ضریب رواناب
        • 2-2-1- مروری بر تحقیقات صورت گرفته روی مدل‌سازی رواناب
        • 2-2-2- مروری بر تحقیقات صورت گرفته روی محاسبه بارش
    • 3- فصل سوم: معرفی منطقه موردمطالعه
      • 3-1- منطقه موردمطالعه
        • 3-1-1- آب‌وهوا و اقلیم
        • 3-1-2- خاک‌شناسی
        • 3-1-3- وضعیت منابع و مصارف
    • 4- فصل چهارم: روش‌شناسی
      • 4-1- مقدمه
      • 4-2- روشهای محاسبه بارش
        • 4-2-1- روش درون‌یابی Kriging
        • 4-2-2- روش درون‌یابی Co-Kriging
        • 4-2-3- ریزمقیاس کردن ماهواره TRMM با استفاده از شاخص NDVI
        • 4-2-4- ریزمقیاس کردن با استفاده مدل رقوم ارتفاعی
      • 4-3- روشهای مدلسازی رواناب
        • 4-3-1- روش SCS-CN
        • 4-3-2- روش Kennessey
      • 4-4- الگوریتم بهینه‌سازی
        • 4-4-1- الگوریتم ژنتیک
      • 4-5- منابع داده
        • 4-5-1- دادههای زمینی بارش و رواناب
        • 4-5-2- داده ماهواره بارش TRMM
        • 4-5-3- داده ماهواره مدل رقوم ارتفاعی SRTM
        • 4-5-4- داده ماهواره‌ای NDVI و کاربری اراضی از سنجنده MODIS
      • 4-6- معیار ارزیابی دقت روش‌های محاسباتی
    • 5- فصل پنجم: نتایج
      • 5-1- مقدمه
      • 5-2- انتخاب زیر حوضه‌های منتخب و جداسازی دبی پایه رودخانه
        • 5-2-1- بررسی هیدروگراف‌های مشاهداتی در ایستگاههای هیدرومتری
      • 5-3- محاسبه بارش
        • 5-3-1- بررسی کیفت دادههای بارش
        • 5-3-2- ارائه نتایج محاسبات بارش
        • 5-3-3- بررسی اثر ارتفاع ایستگاه ثبت بارش روی خطا محاسبات
        • 5-3-4- بررسی اثر حذف اکسترممهای سری دادههای ثبت بارش روی خطا محاسبات
      • 5-4- روش‌های مختلف مدل‌سازی رواناب
        • 5-4-1- نتایج مدل‌سازی در روش استاندارد SCS
        • 5-4-2- نتایج مدل‌سازی در روش استاندارد Kennessey
        • 5-4-3- انتخاب روش بین SCS-CN و Kennessey
        • 5-4-4- تحلیل نتایج روش SCS-CN
      • 5-5- مدل‌سازی رواناب با روش برتر Kennessey
        • 5-5-1- سناریو اول
        • 5-5-2- تحلیل نتایج کالیبراسیون مدل Kennessey تحت سناریو 1
        • 5-5-3- سناریو دوم
        • 5-5-4- تحلیل نتایج کالیبراسیون مدل Kennessey تحت سناریو 2
    • 6- فصل ششم: جمع‌بندی و ارائه پیشنهاد
      • 6-1- جمعبندی
      • 6-2- پاسخ به سوالات تحقیق
      • 6-3- ارائه پیشنهادها
  • 3.ref-final.pdf
    • مراجع
  • 4.EN_Final.pdf
...see more