Please enable javascript in your browser.
Page
of
0
مدل سازی ساختاری و شبیه سازی عددی رفتار مکانیکی عروق کرونر در حین استنت گذاری و رشد پس از آن
فریدون نژاد، بهروز Fereidoonnezhad, Behrooz
Cataloging brief
مدل سازی ساختاری و شبیه سازی عددی رفتار مکانیکی عروق کرونر در حین استنت گذاری و رشد پس از آن
پدیدآور اصلی :
فریدون نژاد، بهروز Fereidoonnezhad, Behrooz
ناشر :
صنعتی شریف
سال انتشار :
1395
موضوع ها :
تصلب شرایین Atherosclerosis خرابی Damage رشد Growth انسداد مجدد Restenosis رفتار...
شماره راهنما :
58-50614
Find in content
sort by
page number
page score
Bookmark
Declaration of Authorship
Abstract
(4)
Acknowledgements
(6)
Introduction
(22)
Overview of the arterial wall
(22)
Cardiovascular diseases and treatments
(28)
In-stent restenosis
(31)
Scope and objectives
(31)
Outline of thesis
(32)
Preliminaries from Nonlinear Solid Mechanics
(34)
Introduction
(34)
Kinematics
(35)
Kinematics of finite deformation
(35)
Kinematics of finite growth
(37)
Balance equations
(38)
Master balance law
(38)
Balance of mass
(40)
Balance of linear and angular momentum
(43)
Balance of internal energy (First law of thermodynamics)
(44)
Balance of entropy (Second law of thermodynamics)
(46)
Stress measures
(47)
Constitutive equations
(50)
Principles for the construction of constitutive equations
(50)
Hyperelastic materials
(53)
Finite element implementation
(54)
Elasticity tensor
(55)
User subroutines in Abaqus
(56)
Constitutive Modeling of Arterial Tissue
(58)
Introduction
(58)
Hyperelasic constitutive model for physiological loadings
(59)
Inelasic constitutive model for supra–physiological loadings
(61)
Pseudo-elastic damage model
(63)
Stress response and thermodynamic consistency
(65)
Elasticity tensor
(67)
Energy functions and damage variables
(69)
Constitutive parameter identification
(71)
Experimental data
(71)
Material and damage parameters
(74)
Finite element implementation and verification
(78)
Implementation
(78)
Verification
(80)
Finite element simulation of arterial clamping
(82)
Residual stress
(82)
Geometry and material properties
(82)
Loading and boundary conditions
(83)
Mesh convergence
(84)
Results
(85)
Effect of material inelasticity
(85)
Effect of clamp geometry
(87)
Conclusion
(92)
Isotropic Damage-induced Growth in Coronary Artery
(98)
Introduction
(98)
Modeling of finite growth
(101)
Kinematics
(101)
Mass balance equation
(103)
Thermodynamic consistency
(105)
Specific form of the free-energy function
(107)
Micromechanically motivated evolution for the mass
(108)
Specific form for the growth tensor and its evolution
(111)
Finite element implementation
(114)
Stress tensor
(115)
Elasticity tensor
(116)
Solution algorithm
(118)
Verification
(119)
Parameter study of the growth model
(119)
Finite element simulation of restenosis after angioplasty
(121)
Conclusion
(124)
Anisotropic Damage-induced Growth in Coronary Artery
(126)
Introduction
(126)
Modeling of finite growth
(126)
Specific form of growth tensor and its evolution
(127)
Finite element implementation
(129)
Stress tensor
(129)
Elasticity tensor
(131)
Solution algorithm
(132)
A semi–analytical solution for anisotropic damage–induced growth of an artery wall
(132)
Residual stress and physiological state
(134)
Damage due to the increased inner pressure
(138)
Damage–induced growth of the artery
(138)
Results
(141)
Conclusion
(143)
Summary and Conclusions
(144)
Summary
(144)
Conclusions
(145)
Future research directions
(148)
Publications
(152)
Explicit forms of the stress and elasticity tensors in Chapter 3
(154)
Derivation of equation (4.24)
(160)
Derivation of the elasticity tensor in equation (4.54)
(164)
Explicit expressions for the elasticity tensors in Chapter 4
(166)
Bibliography
(168)