Please enable javascript in your browser.
Page
of
0
شناسایی نودهای با مرکزیت بالا در شبکه های اجتماعی
ماهیار، حمید رضا Mahyar, Hamid Reza
Cataloging brief
شناسایی نودهای با مرکزیت بالا در شبکه های اجتماعی
پدیدآور اصلی :
ماهیار، حمید رضا Mahyar, Hamid Reza
ناشر :
صنعتی شریف
سال انتشار :
1396
موضوع ها :
شبکه های اجتماعی Social Networks ضریب خوشه بندی Clustering Coefficient بازسازی تنک...
شماره راهنما :
52-50771
Find in content
sort by
page number
page score
Bookmark
Author's Declaration
Abstract
(3)
Acknowledgements
(5)
Dedication
(6)
List of Figures
(7)
List of Tables
(15)
Introduction
(17)
Background and Motivations
(17)
Network Centrality Measures
(19)
Problem Statement
(23)
Compressive Sensing Framework for Sparse Recovery in Networks
(27)
Sparsity Property of Central Nodes in Networks
(27)
Compressive Sensing
(30)
Compressive Sensing over Networks
(34)
Literature Review
(37)
Related Work on Network Centrality
(37)
Related Work on Detection of Central Nodes in Networks
(43)
Related Work on Measurement Matrix Construction in Networks
(46)
A Column-wise Measurement Matrix Construction for Identification of Central Nodes in Social Networks
(69)
Introduction
(69)
The Proposed Method: DICeNod
(70)
Complexity Analysis of DICeNod
(75)
Theoretical Analysis
(77)
Minimum Sufficient Measurements in DICeNod
(77)
Satisfying Network Topological Constraint
(81)
Recovery Guarantees
(85)
Experimental Evaluation
(86)
Datasets
(86)
Competing Methods
(87)
Accuracy of DICeNod on Identifying Top-k Central nodes
(91)
Speedup of DICeNod
(92)
Methodology
(92)
Evaluation Results
(93)
Effectiveness of DICeNod
(94)
Settings
(94)
Evaluation Results
(95)
Correlation between Local and Global betweenness Centralities
(97)
settings
(97)
Evaluation Results
(98)
Conclusion
(100)
A Row-wise Measurement Matrix Construction Method for Detection of Central Nodes in Networks
(102)
Introduction
(102)
The Proposed Method
(103)
Complexity Analysis
(110)
Experimental Evaluation
(113)
Datasets
(113)
Competing Methods
(114)
Settings
(116)
Evaluation Results
(117)
The Accuracy of CS-HiBet on Identifying Top-k Central Nodes
(117)
The Accuracy of CS-HiBet on Rank Prediction
(119)
The Effect of Number of Measurements m on the Accuracy of CS-HiBet
(122)
The Effect of Measurement Length l on the Accuracy of CS-HiBet
(122)
Recovery Probability
(125)
The Effect of m and l on the Accuracy of CS-HiCl
(125)
Conclusion
(126)
Top-k Centrality Identification and its Application in Community Detection
(129)
Introduction
(129)
Problem Importance
(131)
The Proposed Methods
(132)
CS-TopCent
(132)
Complexity Analysis
(136)
CS-ComDet
(137)
Experimental Evaluation
(140)
Evaluation of CS-TopCent
(140)
Datasets
(140)
settings
(141)
Evaluation Results
(142)
Evaluation of CS-ComDet
(148)
Datasets
(148)
settings
(149)
Evaluation Results
(149)
Conclusion
(152)
A Low-cost Sparse Recovery Framework for Weighted Networks
(154)
Introduction
(154)
Problem Statement
(155)
The Proposed Method: LSR-Weighted
(156)
Complexity Analysis
(160)
Experimental Evaluation
(161)
Datasets
(161)
Settings
(162)
Evaluation Results
(162)
Conclusion
(166)
Conclusions and Future Work
(167)
Bibliography
(171)