Loading...

A route to unusually broadband plasmonic absorption spanning from visible to mid-infrared

Aalizadeh, M ; Sharif University of Technology | 2019

512 Viewed
  1. Type of Document: Article
  2. DOI: 10.1007/s11468-019-00916-x
  3. Publisher: Springer New York LLC , 2019
  4. Abstract:
  5. In this paper, a route to ultra-broadband absorption is suggested and demonstrated by a feasible design. The high absorption regime (absorption above 90%) for the suggested structure ranges from visible to mid-infrared (MIR), i.e., for the wavelength varying from 478 to 3278 nm that yields an ultra-wide band with the width of 2800 nm. The structure consists of a top-layer-patterned metal-insulator-metal (MIM) configuration, into the insulator layer of which, an ultra-thin 5 nm layer of manganese (Mn) is embedded. The MIM configuration represents a Ti-Al2O3-Ti tri-layer. It is shown that, without the ultra-thin layer of Mn, the absorption bandwidth is reduced to 274 nm. Therefore, adding only a 5 nm layer of Mn leads to a more than tenfold increase in the width of the absorption band. It is explained in detail that the physical mechanism yielding this ultra-broadband result is a combination of plasmonic and non-plasmonic resonance modes, along with the appropriate optical properties of Mn. This structure has the relative bandwidth (RBW) of 149%, while only one step of lithography is required for its fabrication, so it is relatively simple. This makes it rather promising for practical applications. © 2019, Springer Science+Business Media, LLC, part of Springer Nature
  6. Keywords:
  7. Guided-mode resonance ; Impedance matching ; Localized surface plasmons ; Nanodisk array
  8. Source: Plasmonics ; Volume 14, Issue 5 , 2019 , Pages 1269-1281 ; 15571955 (ISSN)
  9. URL: https://link.springer.com/article/10.1007/s11468-019-00916-x