Loading...

Moving target localization in bistatic forward scatter radars: performance study and efficient estimators

Hamdollahzadeh, M ; Sharif University of Technology | 2020

713 Viewed
  1. Type of Document: Article
  2. DOI: 10.1109/TAES.2019.2934007
  3. Publisher: Institute of Electrical and Electronics Engineers Inc , 2020
  4. Abstract:
  5. This paper considers the localization of a moving target using a forward scatter radar consisting of a transmitter and an array antenna receiver. A direct positioning method based on maximum likelihood (ML) estimation is proposed and compared with the conventional two-step method in which the primary parameters, including Doppler shift and angle of arrival, should be determined in the first step. Moreover, closed-form expressions for Cramer-Rao lower bound of both methods are derived. The aforementioned methods are comprehensively compared in terms of positioning accuracy and computational complexity. Theoretical performance study, including determining the minimum required observation time for achieving a certain positioning error level and analyzing the best possible positioning accuracy in extreme scenarios, is carried out. The results of numerical simulations demonstrate that the proposed direct approach is more precise compared to the two-step method and can achieve higher resolution levels. © 1965-2011 IEEE
  6. Keywords:
  7. Cramer-Rao lower bound (CRLB) ; Direct localization ; Forward scatter radar (FSR) ; Maximum likelihood estimation (MLE) ; Antenna arrays ; Cramer-Rao bounds ; Maximum likelihood estimation ; Radar ; Closed-form expression ; Cramer Rao lower bound ; Efficient estimator ; Forward-scatter radar ; Moving target localization ; Positioning accuracy ; Positioning methods ; Theoretical performance ; Numerical methods
  8. Source: IEEE Transactions on Aerospace and Electronic Systems ; Volume 56, Issue 2 , 2020 , Pages 1582-1594
  9. URL: https://ieeexplore.ieee.org/document/8792177