Loading...
- Type of Document: M.Sc. Thesis
- Language: Farsi
- Document No: 54341 (02)
- University: Sharif University of Technology
- Department: Mathematical Sciences
- Advisor(s): Haji Mirsadeghi, Mir Omid
- Abstract:
- In this thesis we try to understand one of the most important subfield of deep learning, the generative adversarial networks. In this framework the goal is to reach a generator that generates samples from a target distribution. The target distribution is usually su- per high dimensional and we only have sample access to it. primarily , this distribution was used to be for set of Images (e.g. images of celebrity faces) and GANs performed well in this setting. In this framework two models work simultaneously: a generator tries to generate realistic samples from the target distribution and a discriminator or critic tries to distinguish real samples from generated (fake) samples or more precisely the critic tries to tell the distance between the real and generated samples. One of the known ways for the critic model is to use a relatively new notion of distance between distributions called maximum mean discrepancy(MMD). It is based on kernel methods and RKHS theory. In our study we tried to identify models of this type and show its usefulness. At the end some results are demonstrated
- Keywords:
- Generative Adversarial Networks ; Maximum Mean Discrepency ; Kernel Methods ; Reproducing Kernel Hilbert Space ; Kernel Learning
-
محتواي کتاب
- view
- مقدمه
- انواع فاصلههای بین دو توزیع
- f-Divergence
- متریکهای انتگرالی احتمالی
- فاصله وسراستاین:
- شاخص بیشینه اختلاف میانگین
- تعاریف و مقدمات روشهای هستهای
- یک مثال انگیزه بخش
- یک هسته چیست و چگونه ساخته میشود
- ساختن هسته
- مثبت معین بودن هستهها
- فضای هیلبرت با هسته بازآفرین
- هستهها و فضاهای هیلبرت با هسته بازآفرین، در تناظر یک به یک هستند
- شاخص بیشینه اختلاف میانگین، در فضاهای هیلبرت با هسته بازآفرین
- تابع شاهد MMD
- استفاده از MMD برای تمرین دادن GAN ها
- فاصله انرژی و MMDمتناظرش
- معرفی شاخصهای جدید مبتنی بر MMD
- MMD لیپشیتز
- MMD با گرادیان محدود
- شاخص مقیاسیده بیشینه اختلاف میانگین
- توجیه استفاده از الگوریتم کاهش- افزایش گرادیان
- اریبی استفاده همزمان از الگوریتم های کاهش وافزایش گرادیان
- اریبی گرادیان
- ارزیابی مدلهای مختلف GANها
- انواع فاصلههای معرفی شده برای ارزیابی شبکههای مولد تخاصمی
- مثال تحلیلی با توزیعهای نرمال بعد یک
- عدم وجود برآوردگر نااریب
- معماری، اجرای الگوریتم و نتایج
- CelebA
- MNIST
- CIFAR-10
- LSUN Bedrooms
- ImageNet
