Loading...

A holey cavity for single-transducer 3D ultrasound imaging with physical optimization

Ghanbarzadeh Dagheyan, A ; Sharif University of Technology | 2021

306 Viewed
  1. Type of Document: Article
  2. DOI: 10.1016/j.sigpro.2020.107826
  3. Publisher: Elsevier B.V , 2021
  4. Abstract:
  5. Within the compressive sensing (CS) framework, one effective way to increase the likelihood of successful signal reconstruction is to employ random processes in the construction of the sensing matrix. This study presents a 3D holey cavity, with diverse frequency modes, to spectrally code, that is, randomize, the ultrasound wave fields. The simulated results show that the use of such a cavity enables imaging simple or complex targets, such as spheres or the letter E, by only a single transceiver—something that is not possible without the use of a coding structure like the cavity. The effect of noise on imaging results and the size of the targets on the first-order Born approximation (BA) are also investigated. Moreover, this study attempts to optimize the cavity, based on a single numerical metric, such as the sum of singular values (SSV) or mutual coherence (MC). Yet, it will be shown that neither of these metrics can consistently compare the norm-one imaging performance between two cavities of different materials or hole sizes. This leaves finding a quantitative metric for these kinds of optimizations an open problem. © 2020
  6. Keywords:
  7. Random processes ; Ultrasonic imaging ; 3D ultrasound imaging ; Coding structures ; Compressive sensing ; First order born approximations ; Imaging performance ; Quantitative metric ; Simulated results ; Single transceiver ; Signal reconstruction
  8. Source: Signal Processing ; Volume 179 , 2021 ; 01651684 (ISSN)
  9. URL: https://www.sciencedirect.com/science/article/abs/pii/S0165168420303704