Loading...
- Type of Document: M.Sc. Thesis
- Language: Farsi
- Document No: 54920 (04)
- University: Sharif University of Technology
- Department: Physics
- Advisor(s): Rahimi Tabar, Mohammad Reza
- Abstract:
- In this thesis, we first briefly review the basic concepts of stochastic processes. After reviewing and studying the dynamic equation that can explain a stochastic process, we show how one can find on a data-driven basis, the first-, second- and higher-order interactions between different subunits of a complex system by disentangling the dynamics of multivariate time series into stochastic and deterministic parts. Our data-driven approach is to detect different degrees of interactions obtained using conditional moments of Kramers-Moyal coefficients from unconditioned correlation functions and statistical moments of multivariate N-dimensional multivariate time series. Finally, we study the controllability of these complex networks, and by constructing the N−dimensional time-series interaction matrix near the fixed points, we find the driving nodes. Controlling a network means controlling that complex net- work from an initial state to an arbitrary final state in a finite amount of time
- Keywords:
- Stochastic Process ; Dynamical Systems ; Complex Systems Control ; Higher-Order Kuramoto Oscillators ; Data Driven Method
- محتواي کتاب
- view
- 1 مقدمه
- 2 مقدمهای بر فرایندهای تصادفی
- 3 بازسازی برهمکنشها در سیستمهای پیچیده
- 4 بازسازی برهمکنشها در شبکههای پیچیده
- 5 کاربرد روشهای بازسازی جدید برای دادههای iEEG
- 6 کنترلپذیری سیستمهای پیچیده
- کتابنامه