Loading...
Navier-Stokes Equations in the Whole Space with an Eddy Viscosity
Mohammadi, Mehrad | 2022
665
Viewed
- Type of Document: M.Sc. Thesis
- Language: Farsi
- Document No: 55036 (02)
- University: Sharif University of Technology
- Department: Mathematical Sciences
- Advisor(s): Hesaraki, Mahmoud
- Abstract:
- We study the Navier-Stokes equations with an extra Eddy viscosity term in the whole space . We introduce a suitable regularized system for which we prove the existence of a regular solution defined for all time. We prove that when the regularizing parameter goes to zero, the solution of the regularized system converges to a turbulent solution of the initial system. In the first chapter, we have dedicated the necessary preliminaries and then in the second chapter, we have introduced the types of solutions. The third chapter introduces the necessary tools and their properties, with the help of which in the next chapter we have been able to make estimates and obtain their extensions to prove the key theorem of the study. In the fifth chapter of this research, we have provided the necessary context for the sixth chapter, which is the proof of the result of this research. Finally, we have dedicated the last chapter to additional points and research that can be examined in the future.
- Keywords:
- Navier-Stokes Equation ; Turbulent Solutions ; Eddy Viscosities
-
محتواي کتاب
- view
- فصل1 مقدمات، پیشنیازها و معرفی مسئله
- 3-1 فضای سوبولف
- 4-1 آنالیز تانسوری
- 5-1 معرفی مسئله و روشکار
- فصل2 :جوابهای منظم و متلاطم
- فصل3 دستگاه منظم
- فصل4 معادلهٴ انرژی و تقریب استقرایی
- فصل5 وجود جواب برای NSE منظم
- فصل6 عبور از حد در معادلات
- فصل7 نکات تکمیلی و مسائل باز
- کتابنامه
- [30] Young L.C. (1969), Lectures on the calculus of Variations and Optimal Control Theory, Foreword Wendell H. Fleming, W.B. Saunders Co., Philadelphia-London-Toronto, Ont.