Loading...
Search for: hosseini-hosseinabad--s--m
0.152 seconds

    Cycling performance of LiFePO4/graphite batteries and their degradation mechanism analysis via electrochemical and microscopic techniques

    , Article Ionics ; 2021 ; 09477047 (ISSN) Sharifi, H ; Mosallanejad, B ; Mohammadzad, M ; Hosseini Hosseinabad, S. M ; Ramakrishna, S ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this work, cycling-induced aging occurring in 18650-type LiFePO4/graphite full cells at different C-rates is studied extensively. The mechanism of performance degradation is investigated using a combination of electrochemical and microstructural analyses. Half-cell studies are carried out after dismantling the full cells, using fresh and cycled LiFePO4 cathode and graphite anode to independently study them. The results show that the capacity of LiFePO4 electrodes is significantly recovered. The rate of capacity fading in the discharge state considered as irreversible capacity in the graphite is higher than LiFePO4 half cells, indicating a greater degradation in the performance of this... 

    Cycling performance of LiFePO4/graphite batteries and their degradation mechanism analysis via electrochemical and microscopic techniques

    , Article Ionics ; Volume 28, Issue 1 , 2022 , Pages 213-228 ; 09477047 (ISSN) Sharifi, H ; Mosallanejad, B ; Mohammadzad, M ; Hosseini Hosseinabad, S. M ; Ramakrishna, S ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    In this work, cycling-induced aging occurring in 18650-type LiFePO4/graphite full cells at different C-rates is studied extensively. The mechanism of performance degradation is investigated using a combination of electrochemical and microstructural analyses. Half-cell studies are carried out after dismantling the full cells, using fresh and cycled LiFePO4 cathode and graphite anode to independently study them. The results show that the capacity of LiFePO4 electrodes is significantly recovered. The rate of capacity fading in the discharge state considered as irreversible capacity in the graphite is higher than LiFePO4 half cells, indicating a greater degradation in the performance of this... 

    Electrochemical performance and elevated temperature properties of the TiO2-Coated Li[Ni0.8Co0.1Mn0.1]O2 cathode material for high-safety li-ion batteries

    , Article ACS Applied Energy Materials ; Volume 4, Issue 5 , 2021 , Pages 5304-5315 ; 25740962 (ISSN) Razmjoo Khollari, M. A ; Azar, M. K ; Esmaeili, M ; Malekpour, N ; Hosseini Hosseinabad, S. M ; Moakhar, R. S ; Dolati, A ; Ramakrishna, S ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Nowadays, the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode material has attracted great research interest due to its high energy density and less usage of costly raw materials. However, the high nickel content of NCM811 brings about an extremely unstable interface between the electrode and electrolyte and therefore inferior cyclic stability. Herein, we have proposed a straightforward method to deliver 1, 2, and 4 wt % of TiO2 nanoparticles (NPs) on the surface of the NCM811 cathode material and to improve its properties at room and high temperatures. Based on scanning electron microscopy and transmission electron microscopy observations, the coating thickness varies from 10 to 35 nm and the 2 wt %... 

    Copper Oxide/g-C3N4 Nanocomposites: Synthesis and Optical and Photocatalytic Properties Investigation

    , M.Sc. Thesis Sharif University of Technology Hosseini Hosseinabad, Morteza (Author) ; Sadrnezhaad, Khatiboleslam (Supervisor)
    Abstract
    Herein, cupric oxide (CuO)/graphitic carbon nitride (g-C3N4) is synthesized under microwave irradiation for enhanced photoelectrochemical (PEC) performance and photostability. A facile, one-pot method was utilized to directly deposit the nanocomposite onto FTO from a solution containing copper precursor and urea. Possible mechanisms of CuO/g-C3N4 formation and PEC performance improvement were examined via XRD, FTIR, FESEM, XPS, UV-Vis, and PL. Controlled amounts of urea determined the morphological evolution of CuO and the formation of a protective carbon layer, while its excess quantity converted to g-C3N4 in the presence of CuO. Through heat treatment of the nanocomposite, carbon-doped... 

    Enhanced electrochemical performance and thermal stability of ZrO2- And rGO-ZrO2-Coated Li[Ni0.8Co0.1Mn0.1]O2Cathode material for Li-Ion batteries

    , Article ACS Applied Energy Materials ; Volume 4, Issue 1 , 2021 , Pages 934-945 ; 25740962 (ISSN) Khalili Azar, M ; Razmjoo Khollari, M. A ; Esmaeili, M ; Heidari, E ; Hosseini Hosseinabad, S. M ; Siavash Moakhar, R ; Dolati, A ; Ramakrishna, S ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    LiNi0.8Co0.1Mn0.1O2 (NCM811) has been considered as a promising cathode for Li-ion batteries (LIBs) due to its high electrochemical capacity and low cost; however, poor cycling stability is one of the main restricting factors in industrial applications of the NCM811 cathode material. Notably, the capacity fading and low structural stability of NCM811 are intensified at elevated temperatures. ZrO2- and composite rGO-ZrO2-coated NCM811 were fabricated by a facile wet chemical method and evaluated at 25 and 55 °C to overcome these impediments. The ZrO2 coating provides superior cycling and thermal stability and perfectly protects the cathode active material from deleterious side reactions, and... 

    Evaluation of activity of zinc oxide nanoparticles on human rotavirus and multi-drug resistant acinetobacter baumannii

    , Article Pharmaceutical Nanotechnology ; Volume 11, Issue 5 , 2023 , Pages 475-485 ; 22117385 (ISSN) Minaeian, S ; Khales, P ; Hosseini Hosseinabad, M ; Farahmand, M ; Poortahmasebi, V ; Habib, Z ; Tavakoli, A ; Sharif University of Technology
    Bentham Science Publishers  2023
    Abstract
    Background: Rotaviruses are the cause of acute gastroenteritis and severe diarrheal diseases in children worldwide. Children under the age of five are more susceptible to rotavirus infections. Due to such as the lack of effective drugs and supportive therapy only, the development of new antiviral agents against rotaviruses is required. Multi-drug-resistant Acinetobacter baumannii is also one of the most challenging Gram-negative bacteria to control and treat due to its antibiotic resistance, particularly in intensive care units. Objective: This study aimed to investigate the activity of zinc oxide nanoparticles against human rota-virus and multi-drug resistant Acinetobacter baumannii.... 

    One-pot microwave synthesis of hierarchical C-doped CuO dandelions/g-C3N4 nanocomposite with enhanced photostability for photoelectrochemical water splitting

    , Article Applied Surface Science ; Volume 530 , 2020 Hosseini Hosseinabad, S. M ; Siavash Moakhar, R ; Soleimani, F ; Sadrnezhaad, S. K ; Masudy Panah, S ; Katal, R ; Seza, A ; Ghane, N ; Ramakrishna, S ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Cupric oxide (CuO) is a semiconductor of choice for photocathode in photoelectrochemical (PEC) applications due to its great sunlight absorption capability. However, photocorrosion is the main drawback of CuO. Herein, CuO/graphitic carbon nitride (g-C3N4) with a unique microstructure, enhanced PEC performance, and considerable photostability is synthesized under microwave irradiation. A facile, one-pot method is utilized to directly deposit the nanocomposite onto fluorine-doped tin oxide from a solution containing copper precursor and urea. Possible mechanism of CuO/g-C3N4 formation through this novel method is investigated. It is elucidated that controlled amounts of urea critically... 

    Monte Carlo simulation of Feynman-α and Rossi-α techniques for calculation of kinetic parameters of Tehran research reactor

    , Article Annals of Nuclear Energy ; Volume 38, Issue 10 , 2011 , Pages 2140-2145 ; 03064549 (ISSN) Hosseini, S. A ; Vosoughi, N ; Hosseini, M ; Sharif University of Technology
    2011
    Abstract
    Noise analysis techniques including Feynman-α (variance-to-mean) and Rossi-α (correlation) have been simulated by MCNP computer code to calculate the prompt neutron decay constant (α0), effective delayed neutron fraction (βeff) and neutron generation time (Λ) in a subcritical condition for the first operating core configuration of Tehran Research Reactor (TRR). The reactor core is considered to be in zero power (reactor power is less than 1 W) in the entire simulation process. The effect of some key parameters such as detector efficiency, detector position and its dead time on the results of simulation has been discussed as well. The results of proposed method in the current study are... 

    Parameters calculation of transformer winding detailed model based on finite element method to study partial discharge

    , Article International Review on Modelling and Simulations ; Volume 5, Issue 5 , October , 2012 , Pages 1995-2000 ; 19749821 (ISSN) Hosseini, S. M. H ; Vakilian, M ; Enjavimadar, S. M ; Sharif University of Technology
    Praise Worthy Prize  2012
    Abstract
    The first step to locate Partial Discharge in power transformers is to find a model that can clearly explain the behavior of the winding in high-frequency. The detailed model is one of the models used for the study of PD. One of the fundamental problems of the described model is to find its parameters. And the accuracy in calculating these parameters has significant impact on reducing the simulation error and PD locating. The current paper seeks to calculate the parameters of the detailed model 20kv distribution transformer winding by using the finite element method (FEM). Comparing the results of this model with pulse waveforms obtained from the PD to the winding in the laboratory... 

    Investigating morphology and performance of cellulose acetate butyrate electrospun nanofiber membranes for tomato industry wastewater treatment

    , Article Desalination and Water Treatment ; Volume 64 , 2017 , Pages 127-135 ; 19443994 (ISSN) Hosseini, S. A ; Soltanieh, M ; Mousavi, S. M ; Sharif University of Technology
    Desalination Publications  2017
    Abstract
    In this research, cellulose acetate butyrate (CAB) electrospun nanofiber membrane (ENM) was prepared by electrospinning method in order to separate the contaminants of an industrial wastewater. The influence of various electrospinning parameters on morphology and average fiber diameter of the membranes were investigated by scanning electron microscopy and image analysis. The permeability of the membranes was evaluated by measuring pure water flux. In order to investigate the performance of the prepared membranes for tomato wastewater treatment, the rejection of the pollution indices and flux were determined. The results demonstrated the potential of using CAB nanofiber membrane for... 

    High-Photoresponsive backward diode by two-dimensional SnS2/Silicon heterostructure

    , Article ACS Photonics ; Volume 6, Issue 3 , 2019 , Pages 728-734 ; 23304022 (ISSN) Hosseini, S. A ; Esfandiar, A ; Iraji Zad, A ; Hosseini Shokouh, S. H ; Mahdavi, S. M ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Two-dimensional semiconductor materials can be combined with conventional silicon-based technology and sort out part of the future challenges in semiconductor technologies due to their novel electrical and optical properties. Here, we exploit the optoelectronics property of the silicon/SnS2 heterojunction and present a new class of backward diodes using a straightforward fabrication method. The results indicate an efficient device with fast photoresponse time (5-10 μs), high photoresponsivity (3740 AW-1), and high quantum efficiency (490%). We discuss device behavior by considering the band-to-band tunneling model and band bending characteristics of the heterostructure. This device structure... 

    Simulated and measured neutron/gamma light output distribution for poly-energetic neutron/gamma sources

    , Article Journal of Instrumentation ; Volume 13, Issue 3 , March , 2018 ; 17480221 (ISSN) Hosseini, S. A ; Zangian, M ; Aghabozorgi, S ; Sharif University of Technology
    Institute of Physics Publishing  2018
    Abstract
    In the present paper, the light output distribution due to poly-energetic neutron/gamma (neutron or gamma) source was calculated using the developed MCNPX-ESUT-PE (MCNPX-Energy engineering of Sharif University of Technology-Poly Energetic version) computational code. The simulation of light output distribution includes the modeling of the particle transport, the calculation of scintillation photons induced by charged particles, simulation of the scintillation photon transport and considering the light resolution obtained from the experiment. The developed computational code is able to simulate the light output distribution due to any neutron/gamma source. In the experimental step of the... 

    Calculation of fuel burn up and radioactive inventory for HEU fuel element of Tehran Research Reactor

    , Article International Conference on Nuclear Engineering, Proceedings, ICONE, 17 May 2010 through 21 May 2010 ; Volume 2 , 2010 ; 9780791849309 (ISBN) Hosseini, S. A ; Vosoughi, N ; Hosseini, M ; Nuclear Engineering Division ; Sharif University of Technology
    2010
    Abstract
    This paper presents a new approach for fuel burn up evaluation and radioactive inventory calculation used in Tehran Research Reactor. The approach is essentially based upon the utilization of a program written by C# which integrates the cell and core calculation codes, i.e., WIMSD-4 and CITVAP, respectively. Calculation of fuel burn up and radioactive inventories has been done for 26 core configuration of Tehran Research Reactor with HEU fuel element. The present inventory and fuel enrichment of each fuel element have been calculated  

    Simulation of the direct geometry spectrometer for neutron time of flight based on the Monte Carlo method to calculate the energy spectrum of the neutron source

    , Article Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment ; Volume 949 , 2020 Hosseini, S. A ; Mehrabi, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In the present study, simulation of a direct geometry spectrometer for neutron Time-of-Flight (nTOF) is performed based on the Monte Carlo method to calculate the energy spectrum of the neutron source. To this end, the ability to simulate the simultaneous emission (such as the simultaneous emission of the neutron and gamma particles from the241Am-9Be neutron source) and the neutron Pulse Height Distribution (nPHD) were added to the MCNPX computer code. In addition, a post-processing software was developed to analyze the massive amounts of the data in the output of the PTRAC card. The application of the nTOF as a direct method to calculate the neutron spectrum eliminates the error induced by... 

    Prognostic of rolling element bearings based on early-stage developing faults

    , Article International Journal of COMADEM ; Volume 23, Issue 1 , February , 2020 , Pages 55-60 Hosseini Yazdi, M ; Behzad, M ; Ghodrati, B ; Khodaygan, S
    COMADEM International  2020
    Abstract
    Rolling-element bearing (REB) failure is one of the general damages in rotating machinery. In this manner, the correct prediction of remaining useful life (RUL) of REB is a crucial challenge to move forward the unwavering quality of the machines. One of the main difficulties in implementing data-driven methods for RUL prediction is to choose proper features that represent real damage progression. In this article, by using the outcomes of frequency analysis through the Envelope method, the initiated/existed defects on the ball bearings are identified. Also, new features based on developing faults of ball bearings is recommended to estimate RUL. Early-stage faults in ball bearings usually... 

    Dynamic economic dispatch in restructured power systems considering transmission costs using genetic algorithm

    , Article Canadian Conference on Electrical and Computer Engineering; Technology Driving Innovation, 2004, Niagara Falls, 2 May 2004 through 5 May 2004 ; Volume 3 , 2004 , Pages 1625-1628 ; 08407789 (ISSN) Hosseini, S. H ; Kheradmandi, M ; Sharif University of Technology
    2004
    Abstract
    Over the past decade, the power industry in many countries around the world has been undergoing massive changes to introduce competition. In power systems under transmission open access, an optimal schedule of generation of units to satisfy the demand at the minimum production and transmission costs with consideration of system operation constraints is an important issue. In this paper, a method for centralized economic dispatch in deregulated power systems is presented. The considered constraints are minimum and maximum power generation of units, capacity of transmission lines and ramp rate limits. Genetic algorithm is used to solve a nonlinear objective function. Simulations are performed... 

    Novel cationic-modified salep as an efficient flocculating agent for settling of cement slurries

    , Article Carbohydrate Polymers ; Volume 93, Issue 2 , April , 2013 , Pages 506-511 ; 01448617 (ISSN) Pourjavadi, A ; Fakoorpoor, S. M ; Hosseini, S. H ; Sharif University of Technology
    2013
    Abstract
    A new cationic flocculant was synthesized by graft copolymerization of acrylamide (AM) and 3-(methacryloylamino)propyl]trimethylammonium chloride (MAPTAC) onto salep using free radical polymerization initiated by ammonium persulfate (APS) to produce cationic salep [S-g-P(AM-co-MAPTAC)]. Reaction parameters (monomers/salep ratio, concentration of reactants, MAPTAC/AM ratio, and APS) were optimized using a full factorial experimental design to obtain the highest settling rate for cement suspensions. The best performing product was characterized by gel permeation chromatography (GPC), FTIR, 1H NMR spectroscopy, and thermogravimetric analysis (TGA). The resulted cationic flocculant may be... 

    Scanning tunneling spectroscopy of MoS2 monolayer in presence of ethanol gas

    , Article Materials Research Express ; Volume 5, Issue 4 , April , 2018 ; 20531591 (ISSN) Hosseini, S. A ; Iraji Zad, A ; Berahman, M ; Aghakhani Mahyari, F ; Hosseini Shokouh, S. H ; Sharif University of Technology
    Institute of Physics Publishing  2018
    Abstract
    Due to high surface to volume ratio and tunable band gap, two dimensional (2D) layered materials such as MoS2, is good candidate for gas sensing applications. This research mainly focuses on variation of Density of States (DOS) of MoS2 monolayes caused by ethanol adsorption. The nanosheets are synthesized by liquid exfoliation, and then using Scanning Tunneling Spectroscopy (STS) and Density Functional Theory (DFT), local electronic characteristic such as DOS and band gap in non-vacuum condition are analyzed. The results show that ethanol adsorption enhances DOS and deform orbitals near the valence and conduction bands that increase transport of carriers on the sheet. © 2018 IOP Publishing... 

    Modeling of partial discharge in transformer winding by multi-conductor transmission line model

    , Article International Review of Electrical Engineering ; Volume 7, Issue 2 , 2012 , Pages 3926-3934 ; 18276660 (ISSN) Hosseini, S. M. H ; Vakilian, M ; Ghaffarian Niasar, M ; Sharif University of Technology
    Praise Worthy Prize  2012
    Abstract
    To locate accurately the occurrence of a partial discharge in a power transformer winding, a wide frequency band model of the winding is required. In this paper a wide frequency band Multi Conductor Transmission Line model (MTL) is employed to simulate the propagation of PD signal in transformer windings. The MTL model is briefly reviewed and the related equations of the model are reformulated to easily simulate occurrence of a PD signal along the winding. Software is developed in Matlab to calculate the windings resonance frequencies and the magnitudes of over-voltages occurring between different disks along the winding. Then propagation of PD signal in a power transformer (900MVA, 525kV),... 

    Thermoelastic creep analysis of a functionally graded various thickness rotating disk with temperature-dependent material properties

    , Article International Journal of Pressure Vessels and Piping ; Volume 111-112 , 2013 , Pages 63-74 ; 03080161 (ISSN) Hosseini Kordkheili, S. A ; Livani, M ; Sharif University of Technology
    2013
    Abstract
    A semi-analytical solution for rotating axisymmetric disks made of functionally graded materials was previously proposed by Hosseini Kordkheili and Naghdabadi [1]. In the present work the solution is employed to study thermoelastic creep behavior of the functionally graded rotating disks with variable thickness in to the time domain. The rate type governing differential equations for the considered structure are derived and analytically solved in terms of rate of strain as a reduced to a set of linear algebraic equations. The advantage of this method is to avoid simplifications and restrictions which are normally associated with other creep solution techniques in the literature. The thermal...