Search for: decellularization
0.092 seconds

    Fabrication of Composite Scaffold Composed of Cartilage Extracellular Matrix/Chitosan with High Mechanical Strength for Cartilage Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Khozaei Ravari, Mojtaba (Author) ; Mashayekhan, Shohreh (Supervisor) ; Baghban Eslami Nejad, Mohammad Reza (Supervisor)
    Methods that has been used for articular defects are faced with many limitations, so new therapies based on tissue engineering were taken into consideration in recent years. However, tissue engineering also encounters challenges regarding optimal scaffold construction and suitable cell source selection. Mature harvested chondrocytes are limited in number and may lose their chondrogenic potential in several cultures, leading to dedifferentiation. In addition, using stem cells also presents unique challenges associated with them, among which hypertrophic differentiation is the most substantial problem. Choosing the appropriate biomaterial similar to the cartilage structure with sufficient... 

    Optimization of Cell Proliferation on Polymeric Carriers Composed of Accelular Heart Matrix

    , M.Sc. Thesis Sharif University of Technology Ghanbari Asl, Sasan (Author) ; Mashayekhan, Shohreh (Supervisor) ; Abd Khodaei, Mohammad Jafar (Supervisor)
    Following heart coronary artery occlusion, heart stroke (HS) happens which leads to the creation of a dead zone on heart tissue named Myocardial Infarction (MI), the presence of which on a patient’s heart will result in succeeding HSs and the death of the patient. In this study, porous microcarriers capable of being utilized in cardiovascular tissue engineering is fabricated using a mixture of myocardium ectracellular matrix (ECM) and Chitosan (Cs). Results of Elasticity tests, SEM images, swelling behavior, biodegradability test, and cell proliferation assay showed that the scaffold consisting of 3.5% (w/w) Chitosan and 0.66% (w/w) ECM has the best potential in providing cardiovascular... 

    Design and Fabrication of Scaffold Composed of Acellular Cartilage Matrix and Chitosan

    , M.Sc. Thesis Sharif University of Technology Sivandzade, Farzane (Author) ; Mashayekhan, Shohreh (Supervisor) ; Hasanzadeh, Zabihollah (Supervisor)
    Cartilage is an avascular tissue, having limited ability to repair itself. Since the methods for treatment of cartilage defects have been not effective, in recent years, new therapies based on tissue engineering are considered.This paper reports on the development of porous microcarriers composed of acellular matrix of cartilage and natural polymer chitosan. Microcarriers were prepared by electrospray method. Results of mechanical tests, SEM imaging, water uptake behaviour, biodegradation test, and MTT assay demonstrated that the microcarriers composed of 2% (wt) chitosan and 1% (wt) ECM has the best potential for growth and proliferation of primary chondrocyte cells. These results... 

    Dosign and Construction of Natural Polymers-based Hydrogels for Cartilage Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Nasiri, Bita (Author) ; Mashayekhan, Shohreh (Supervisor) ; Hajebrahimi, Zahra (Supervisor)
    Once damaged, articular cartilage has very little capacity for spontaneous healing because of the avascular nature of the tissue. Although many repair techniques have been proposed over the past decades, none has successfully regenerated long-lasting tissue to replace damaged cartilage. Tissue engineering have recently demonstrated tremendous approaches for regeneration of cartilage tissue lesions. Tissue engineering is based on three principles: cells, scaffolds for cell adhesion and growth factors. Three-dimensional biodegradable scaffolds play an important role in tissue engineering. In this study, novel cross-linked hybrid chitosan/ECM scaffolds were prepared for articular cartilage... 

    Construction of Micro Carriers Composed of Accelular heart Matrix for Heart Tissue Engineering Application

    , M.Sc. Thesis Sharif University of Technology Esmaeili Pourfarhangi, Kamyar (Author) ; Mashayekhan, Shohreh (Supervisor)
    The heart stoke which happens due to an obstruction in the coronary artery can result in the presence of a dead part on the heart muscle called Myocardial Infarction (MI). MI can lead to next heart strokes and even the death of the patient. So far, a great number of biomaterials consisting of natural and synthetic polymers and Extra Cellular Matrix (ECM) of human body have been recommended for being used in tissue engineering approaches aiming to rehabilitate the infarcted site. The use of ECM is recommended for mimicking the microenvironment of the body as much as possible which can be very helpful in proliferation of the cultured cells. In this project, we fabricated a composite...