Loading...
Search for:
nanostructure
0.15 seconds
Experimental Study of the β-CD-g-PG Hybrid Nanostructure On Phase Solubilityof Hydrophobic Drug
, M.Sc. Thesis Sharif University of Technology ; Saifkordi, Aliakbar (Supervisor) ; Vossoughi, Manouchehr (Supervisor)
Abstract
Some widely used drugs such as paclitaxel (PTX) are poorly water soluble. The clinical use of PTX with solubilizer causes side effects. These problems limited its application in treatments. In this work has been studied the effect of β-CD-g-PG (HPCD) hybrid nanomaterials, conjugated PG branches onto β-CD core, on the water solubility of PTX. First HPCD has been synthesized. Then the inclusion complex of PTX with HPCD was prepared. The inclusion complex efficiency for PTX:HPCD complex in 1:25 mole ratio was 87%. Then solubility of PTX with HPCD in water has been determined, showing Ap type phase solubility diagram. Then stability constants were calculated. The first order and second order...
Doping Effect of Copper and Copper Oxide on H2S Sensing of Nanostructured WO3
, M.Sc. Thesis Sharif University of Technology ; Iraji Zad, Azam (Supervisor)
Abstract
The aim of this research is preparation of tungsten trioxide nanoparticles film for hydrogen sulfide gas sensing. These nanoparticles were made by simple and inexpensive sol-gel method. To improve gas sensing properties, various precursors of copper and copper oxides were added to the sol. This solution was coated on alumina substrate by spin coating method. After annealing, sensing properties of samples were studied by measuring the electrical resistance. Best precursor and its molar percentage of copper to tungsten were selected (WO3-Cu2O (1%)). All tests for this sample were done in temperatures below 100 °C and gas concentration lower than 10 ppm. Sensitivity of WO3-Cu2O (1%) to 1 ppm...
Multiscale Modeling of Crack Propagation under Thermal Fatigue in Nano-Structured Materials
, Ph.D. Dissertation Sharif University of Technology ; Khoei, Amir Reza (Supervisor)
Abstract
In this research, various molecular dynamics simulations have been carried out and sensitivity of the crack propagation process to the simulation parameters including the load pattern, maximum applied strain, temperature, loading frequency, and percentage of defects is investigated. Moreover, the crack propagation in poly-crystalline structure is studied using a larger model consisting of several atomic crystals and the effect of the presence of crystals on crack growth is investigated. In the next step, a novel coupling technique is developed in the continuum–atomistic multi-scale analysis of temperature field problems. In this manner, a new thermostat is introduced based on the single-atom...
Design and Implement of Gas Distribution and Control System for Deposition of Nano-Structure through NFCVD
, M.Sc. Thesis Sharif University of Technology ; Rashidian, Bizhan (Supervisor)
Abstract
For realization of nanosale photonic device required by the future system, electron beams, and scanning probe microscopes have been used to control the site on the subtrate. However, these techniques have a fatal disadvantage because they cannot deal with insulators and Diffraction of light, limiting their application.To overcome this difficulties, we design and implement near-field optical chemical vapor deposition, which enables the fabrication of nanometer-scale structure, while controlling their position. To guarantee that an optical near field is generated sufficiently, we fabricated a sharped W-tip by electrochemical etching. The separation between the W-tip and the substrate was kept...
Design and Fabrication of Electrical Field Sensor for Biological and Corrosion Currents Application
, M.Sc. Thesis Sharif University of Technology ; Simchi, Abdolreza (Supervisor) ; Fardmanesh, Mehdi (Supervisor)
Abstract
Electric field sensors are one of the common types of sensors that are widely used today to record changes in the electric field in underwater environments, also record pH changes in different materials. This type of sensor is inspired by the shark mucous membrane. In this study, silver / silver chloride silver (Ag / AgCl) was used for three methods of silver filtration directly in electrolyte containing chloride ion, Electrophoretic electrode method and electrode making method using silver oxide adhesive. Part of the electrodes manufacturing method involves converting part of silver into silver chloride. The made electrode has a length of 7 cm and a diameter of 0.5 mm, with its core made of...
Design and Synthesis of a Novel Nanomaterial as a Carrier of a Hydrophobe drug in an Inclusion Complex based on Cychlodextrin
, M.Sc. Thesis Sharif University of Technology ; Vossoughi, Manouchehr (Supervisor) ; Kazemi, Akhtarolmolouk (Supervisor)
Abstract
Paclitaxel is used as a drug against breast and ovarian cancers. Although paclitaxel has high biologic activity, it has very pour solubility in water like some other drugs. Since drugs should be solved in water to be absorbed by the body, for absorb enhancement, we should use carriers which includes both polar and non polar sites. eta-Cyclodextrin which has this feature is capable for producing inclusion complex in its hydrophobic pores with non polar materials. In this project by adding polymeric polyacrylamide branches on beta-Cyclodextrin, polymeric nano structure has been developed to enhance water solubility in comparison with pure beta-Cyclodextrin. Study on producing polymeric nano...
Designing Electrophysiological Characterization System of Biological Cells Based on the Use of Nanostructured Electrodes
, Ph.D. Dissertation Sharif University of Technology ; Vossoughi, Manouchehr (Supervisor) ; Sasanpour, Pezhman (Supervisor) ; Mohammadpour, Raheleh (Supervisor)
Abstract
In the last half century, the recording of the electrophysiological activities of the neurons has been one of the most effective methods for neuroscience development. One of the techniques used to record the activity of the nerve cells is the use of multi-electrode arrays (MEAs). Current MEAs still face limitations such as low signal-to-noise ratio (SNR) and low spatial resolution. There is a need to develop arrays that are smaller in size and have less impedance to achieve better spatial resolution and lower noise levels. The main focus of this research is on the designing and fabrication of multi-electrode arrays and improvement of their properties using nanostructures and conductive...
Synthesis and Characterization of Nanofibrous Polymeric Composite Containing Two-dimensional MXene and Capable of Drug Release for Tissue Engineering Applications
, M.Sc. Thesis Sharif University of Technology ; Simchi, Abdolreza (Supervisor)
Abstract
Nowadays, biocompatible composites are being utilized as scaffolds supporting cell growth promotion and features with the aim of organs regeneration or substitution based on tissue engineering principals. Moreover, in order to improve bioscaffolds features and function, various two-dimensional composite fillers have been under investigation; for instance, Graphene, Boron nitride, Metal dichalcogenides and oxides and black phosphorous and also electrospinning is mentioned as one of the most compatible and conventional processes of scaffold design that is also the main method of fabrication in this study. In addition, it should be pointed that biocompatible polymers and particularly natural...
Synthesis and Characterization of Nanostructured Cadmium Tellurides for Solar Cell Application
, M.Sc. Thesis Sharif University of Technology ; Mohammadi, Mohammad Reza (Supervisor)
Abstract
Recently, synthesis of nanostructured CdTe of II-VI semiconductors has caused much attention due to their great potential in many optoelectronic applications such as solar cells and detectors. Among different synthesis methods, solvothermal process is a suitable method due to low temperature synthesis. In this work CdTe nanoparticles, nanowires, nanorods and nanobelts with cubic structure (zincblende) were synthesized via a simple solvothermal method at a moderate temprature. The effect of processing parameters on some properties sush as crystal structure, morphology, crystallite size chemical bond configuration and optical properties of synthesized CdTe were investigated. It was found that,...
Synthesis of Super-porous Nano Structure Nitinol by Milling using Space Holder Technics and Measure of Termomechanical Properties
, M.Sc. Thesis Sharif University of Technology ; Sadrnezhad, Khatiboleslam (Supervisor)
Abstract
NiTi is known as a most important material for manufacturing implants and other medical devises duo to its shape memory and super elasticity properties, high energy damping and high corrosion resistance.In this project the possibility of producing nano structured NiTi implant with high porosity was investigated. For reaching to nano scale mechanical alloying process was done on Ti and Ni powder as row materials. Mechanical alloying process and the possibility of reaching nano structure or amorphous phase was investigated. Space holder technic was used for reaching a porous structure. Sintering process was planned in a way to inhibit grain growth as much as possible. The samples sintered in...
Mechanochemical Synthesis of Copper Doped Nanostructured Fluorapatite
, M.Sc. Thesis Sharif University of Technology ; Sadrnezhad, Khatiboleslam (Supervisor) ; Vahdati Khaki, Jalil (Co-Advisor)
Abstract
Fluorapatite (FA) has been widely used on orthopedic and dentistry prosthesis due to its excellent bioactivity properties. Therefore, the aim of this work is to prepare and characterize copper doped nanostructured fluorapatite powder via mechanical alloying (MA) method using a high energy planetary ball mill.FA powder samples with the general chemical formula Cux.Ca(10-x).(PO4)6.F2 (where x is the ratio of substitution of Cu-2 by F−1) are successfully synthesized using the starting materials of calcium oxide (CaO), phosphorous pentoxide (P2O5), calcium fluoride (CaF2), and copper (II) oxide (CuO) powders under various milling times. In order to evaluate the antibacterial effect of copper,...
Preparation, Physicochemical Evaluations and Kinetic Modeling of Vanadium Oxide Nanocatalysts over Carbon Nanostructures for Oxidative Dehydrogenation of Propane (ODHP) Reaction
, Ph.D. Dissertation Sharif University of Technology ; Kazemeini, Mohammad (Supervisor) ; Khorasheh, Farhad (Supervisor) ; Rashidi, Ali Morad (Supervisor)
Abstract
A series of V2O5 catalysts supported on multiwall carbon nanotube (MWCNT), single wall carbon nanotube (SWCNT) and graphene were synthesized by hydrothermal and reflux methods for oxidative dehydrogenation of propane (ODHP) to propylene. The catalysts were characterized by techniques including the BET surface area measurements, XRD, FTIR, H2-TPR, NH3-TPD, FESEM and UV-vis diffuse reflectance. The performance of the catalysts and the supports were subsequently examined in a fixed bed reactor. The vanadium catalyst supported on graphene with C/V molar ratio of 1:1 synthesized through the hydrothermal method had the best performance under the reactor test conditions of 450°C, feed C3H8/Air...
Studying and Synthesize of H2S Gas Sensors Based on Modified WO3 Nanostructure Thin Films
, M.Sc. Thesis Sharif University of Technology ; Iraji zad, Aazam (Supervisor) ; Rahimi, Fereshte (Co-Advisor)
Abstract
H2S is a toxic gas used in chemical laboratories and industries. H2S is also liberated in nature due to biological processes and also from mines and petroleum fields. At some threshold level, exposure to concentrations over 10 ppm can result in headaches, irritability, dizziness and in some case leads to death. So that introducing sensors which sense H2S at ppm level with the low response time is so essential. The present work emphasizes on H2S resistance-sensing properties of pure and Pd doped WO3 films prepared by Arc discharge method. XRD, SEM, EDAX and XPS were applied to analyze crystal structure, morphology and chemical composition of the films. The analyzes results showed that films...
Preparation and Characterization of One-dimensional Copper Oxide Nanostructures for Field Ionization Gas Sensors
, M.Sc. Thesis Sharif University of Technology ; Iraji Zad, Azam (Supervisor)
Abstract
The purpose of this project is to construct a gas sensor based on one-dimensional nanostructured electrodes of copper oxide. By creating of these nanostructures, can be reduced breakdown voltage of gases, including flammable, to a few hundred volts. The CuO nanowires were grown by thermal oxidation on copper substrate to form self-assembled. In this method, by heating the copper foil,Cu2O also was formed on substrate. Effects of surface tension of substrate and oxidation temperature on surface density and structure of the nanowires were studied. SEM images taken from the samples showed that the surface tensions increases the density of nanowires and increasing the oxidation temperature leads...
Synthesis and Characterization of Nano-photocatalytic Metal Oxide / Graphene Using arc Discharge in Liquid
, M.Sc. Thesis Sharif University of Technology ; Iraji Zad, Azam (Supervisor) ; Ahadian, Mohammad Mahdi (Supervisor)
Abstract
In this thesis, graphene/titanium oxide and graphene/tungsten oxide composites were synthesized using arc discharge in liquid and their photocatalytic behavior was studied. Based on physical principles of the arc discharge in liquid, geometry of point-point was used for metallic Ti and W electrodes. TiO2 and WO3 nanoparticles and their nanocomposites with graphene and graphene oxide (GO) were studies using DLS, UV-vis, PL, ICP, FTIR, XRD, Raman and TEM characterization. The concentration of aqueous solution of Rhodamine B mixed with graphene/WO3 and GO/WO3 composites and WO3 nanoparticles under ultraviolet light was measured versus time and reached to 0.1, 0.6 and 0.6 of the initial value...
Preparation and Evaluation of Mesoporous Nanostructured Nickel Catalysts for Syngas Production by Combined Reforming of Methane
, M.Sc. Thesis Sharif University of Technology ; Baghalha, Morteza (Supervisor) ; Rezaei, Mehran (Supervisor)
Abstract
In this study, the effect of nano-structure mesoporous supports on the performance of the nickel catalysts in the combined reforming process was investigated. In the first part, magnesium aluminate spinel was prepared using a sol-gel method and employed as a catalyst support for the preparation of nickel catalysts with various nickel contents. The samples were characterized using BET, XRD, TPR, TPO, CO chemisorption and SEM techniques. The results showed that increasing the nickel content up to 7.5 wt.% improved the catalytic activity, but further increase in nickel content decreased the activity due to the decrease in the nickel dispersion. The catalysts except of the sample with 2.5 wt.%...
Deposition and Analysis of Indium-Tin-Oxide NanoStructures Using Sputtering
, M.Sc. Thesis Sharif University of Technology ; Rashidian, Bijan (Supervisor)
Abstract
Transparent conductive materials have been widely used in semiconductor technology. Among them all, Indium tin oxide (ITO) has been utilized as electrodes in liquid crystal displays, solar cells, heat reflecting films and gas sensors.In general, the desired properties of transparent conductive oxides are high conductance and transmission. However, due to the complexity of ITO molecular structure, the film properties strongly depend on the depositon parameters.In first part of this thesis, physical properties and electrical characteristic of ITO films, different deposition techniques, and effects of deposition parameters (substrate temperature, pressure, power, etc. ) on film properties are...
Synthesis of Graphene Oxide and Study of its Fluorescence Properties
, M.Sc. Thesis Sharif University of Technology ; Akhavan, Omid (Supervisor)
Abstract
Graphene oxide is a single sheet of Carbon atoms which has been arranged on a two-dimensional honeycomb lattice. Functional groups such as epoxy, carboxyl and carbonyl are located on basal plane and at the edges of graphene oxide and they localize electrons on the surface of graphene oxide and open band gap in its band structure. Pure graphene has zero band gap, so existence of fluorescence properties is unlikely; but graphene oxide has fluorescence properties due to band gap in its band structure. Fluorescence properties of graphene have been used in live cell imaging and drug delivery, so study and increasing of fluorescence properties is significantly important. The purpose of this...
, M.Sc. Thesis Sharif University of Technology ; Sadrnezhad, Khatiboleslam (Supervisor)
Abstract
Due to the ability in producing nanostructured materials, Mechanical Alloying has gained outstanding position in comparison with other materials fabrication techniques. In this research,with different milling condition, Alloying of Ni-Ti-Ag was performed. In order tofabricating the alloy, twodifferent initial materials were employed.In one process, nickel, titanium and silver were used as raw materials, and in another, titanium hydride was used instead of titanium.Initial powders were investigated in planetary mill, SPEX mill and vibratory disc indifferent times. Using XRD, microstructure information and phase analysis was obtained. EDS was employed for determination of elemental...
Solvent Engineering for Preparation of Perovskite Film based on Lead Iodide for Solar Cells Applications
, M.Sc. Thesis Sharif University of Technology ; Seyed Reyhani, Morteza (Supervisor) ; Mohammadi, Mohammad Reza (Supervisor) ; Riahi Noori, Nastaran (Co-Advisor)
Abstract
The microstructure, morphology and quality of the perovskite organic-inorganic layer as an absorber layer in perovskite solar cells has a significant role on the efficiency and energy conversion of the device. Different solvent engineering methods have been employed to prepare the perovskite layer with the desired properties and thier reproducibility have been studied. Herein, we applied a two-step solution approach by solvent engineering method, using solvents such as isopropyl alcohol, acetone and thier mixture, for preparation of lead iodide films. Moreover, their metallurgical and photovoltaic properties were investigated. The impact of solvent engineering, using solvents such as...