Loading...
Search for: akbarzadeh--abbas
0.121 seconds

    Effect of Cryogenic SPD with Various Strain Conditions on Development of Nano and Bimodal Structures in Al Alloys

    , Ph.D. Dissertation Sharif University of Technology Mohebbi, Mohammad Sadegh (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Amount of strain has been always considered as the primary parameter affecting the microstructural and strength evolutions during Severe Plastic Deformation (SPD). However, these evolutions unavoidably saturate in large strains under deformation with constant conditions, i.e. constant deformation temperature, strain rate and strain path. In this study, effects of these factors on the microstructural and flow behavior of Ultra-Fine Grain (UFG) aluminum (AA 1050 and AA 5052) processed by Accumulative Roll-Bonding (ARB) are investigated. The flow behavior and its time-dependent aspect are evaluated up to large strains by Plane Strain Compression (PSC) and Stress Relaxation (SR) tests. ... 

    Macrostructure and Mechanical Properties of Structural Composite of Aluminum and Stainless Steel Net Processed by Casting and Rolling

    , M.Sc. Thesis Sharif University of Technology Keshavarz Kermani, Ali (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Having the high strength to weight ratio has been made the composites special materials very important these days. The low density of aluminum and its appropriate corrosion properties make it a good choice for metallic matrix. Also, the high tensile strength of stainless steel fibers can helps as a reinforcement in the composite to improve its mechanical properties. Enhancing the bonding of composite’s components can helps it to develop its properties. Casting is an appropriate process for making an aluminum matrix containing steel fibers as reinforcement in a structural composite. In addition, rolling process can remove so many defects made by casting, and improve joining of fibers and... 

    Production and Characterization of AA5083 Aluminium Sandwich Sheet with Porous (FOAM) Core by Accumulative Roll Bonding

    , M.Sc. Thesis Sharif University of Technology Mozaffari, Mohammad Amin (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    In this research, aluminium sandwich structure was manufactured by accumulative roll bonding (ARB). In this method, aluminum AA5083 strip was used as the matrix and titanium hydride was selected as the foaming agent powder. Due to the use of particle foaming agent in the first pass, reduction, preheat temperature, rolling speed and the percentage of powder particles parameters were examined. Finally, the 66% reduction, 400 °C preheat temperature and 25 rpm rolling speed, were considered as the optimal values. At the next stage of this process 50% reduction was applied at each pass and this process was repeated up to five passes. After ward, in order to create a sandwich structure, aluminum... 

    Investigation on Modeling and Analytical Study and Bonding of Multi-Layer Copper-Austenitic Stainless Steel Roll Bonded Sheets

    , M.Sc. Thesis Sharif University of Technology Nouripour, Mohammad Hossein (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    In the roll bonding process, the same and non-homogeneous metals are bonded to each other by rolling deformation, and the sheet produced exhibits multi-properties. Two- and three-layer copper and stainless steel sheets are used for a variety of purposes. Stainless steel-Copper bilayer sheets are not just cost effective in production, but also have mechanical and thermal benefits from the inherent properties of copper and stainless steel. In addition to its increased strength, good ductility, reduced thermal expansion and excellent soldering are other benefits. In the past, some researchers have been studied on the bonding strength and formability of austenitic stainless steel-copper bilayer... 

    Comparison of the Effect of Controlled Annealing on Accumulative Roll Bonded 5083 Aluminum Alloy and AZ31 Magnesium Alloy Sheets

    , M.Sc. Thesis Sharif University of Technology Kalani, Amir Reza (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Lightweight aluminum and magnesium alloy sheets do not generally possess as much strength as steel sheets and their strength need to be increased by a suitable process such as Accumulative Roll Bonding (ARB). One of the most important limitations of ARB is the low ductility and formability of the sheets produced by this process. In the present research conducted on the 5083 aluminum and AZ31 magnesium alloy sheets efforts have beem made to overcome this limitation by heating up the sheets whether during metal forming process as hot deformation or as distinct controlled annealing process subsequent to the deformation, in order to develop the application domain of the sheets. Results... 

    Microstructure Features and Mechanical Properties Microtubes of WE43 Magnesium Alloys for Biodegradable Vascular Stent Application

    , M.Sc. Thesis Sharif University of Technology Torabi Kafshgari, Mehran (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Magnesium and its alloys have gained much attention in medical applications, especially bio-degradable stents. However, they have not been used extensively due to their natural limitations, such as weak mechanical properties. WE43 magnesium alloy has gained attention as a bio-alloy due to its high temperature and good corrosion resistance. The present study aims to use a combination of ECAP and direct tube extrusion to fabricate thin wall tubes with good mechanical properties using WE43 magnesium alloy. In the first phase, the ECAP process at 370°C were conducted up to 4 passes on the homogenized samples to reach ultrafine grain structure. Subsequent to ECAP, direct tube extrusion at 230 °C,... 

    Investigation of Microstructural Characteristics and Mechanical Properties of Microalloyed Magnesium X0 via Severe Plastic Deformation Process with Cyclic Closed Die Forging

    , M.Sc. Thesis Sharif University of Technology Kord Taminim, Mohammad (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Nowadays, the application of magnesium alloys as biodegradable implants in the medical industry has garnered significant attention. However, the low mechanical properties and rapid degradation rate of pure magnesium implants in the biological environment have hindered their widespread use for clinical applications. Magnesium-calcium alloys, due to their low degradation rate and promotion of faster bone healing, have become attractive choices for orthopedic applications. Nevertheless, the micro alloy X0 used in this study lacks sufficient strength and flexibility, limiting its potential applications. Utilizing severe plastic deformation methods to create ultrafine microstructures can greatly... 

    Effect of Temperature and Strain Rate on the Nano-Structure Produced by ASB Process in Production of Aluminum CNG Cylinders

    , M.Sc. Thesis Sharif University of Technology Alinaghian, Hossein (Author) ; Akbarzadeh Changiz, Abbas (Supervisor)
    Abstract
    Accumulative spin bonding as a severe plastic deformation process results in a finer microstructure through multi-pass processing. This method consists of successive and repeated preparation of internal and external surfaces of two similar tubes, simultaneous flow forming of two tubes and production of a tube with the same thickness as the primary one. This word was conducted to study the effect of different rotational speeds and different cooling environments on the mechanical properties and microstructure of AA1050 tubes. The samples were prepared with 0.8 mm thickness and 92.8 mm internal diameter through four passes of ASB with 250, 500, 710 rpm under air, water and acetone cooling... 

    Formability Study of Tailored Blanks with Different Thickness Ratios Welded by Friction Stir Welding

    , M.Sc. Thesis Sharif University of Technology Kolahgar, Sina (Author) ; Kokabi, Amir Hossin (Supervisor) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    These days the usage of welded tailor blanks with sufficient stability and flexibility is accelerating rapidly in order to production of slighter parts and reduction of fuel consumption in transportation means. Therefore, the conjuncture of blanks by welding methods is highly considerable before forming and ultimate production. Friction Stir Welding is greatly appealing to industry as one of the newest methods of solid state welding in production of TWB blanks. In this research, the feasibility study of Friction Stir Welding of thin Al 1100 – H18 alloy blanks with 1.5, 2 and 2.5mm thickness has been evaluated first. After creation of sound welds with same thicknesses, Friction Stir Welding... 

    Molecular Dynamics Simulation of Phase Transformation and Shape Memory Effect of Ni-Ti Nanowires

    , M.Sc. Thesis Sharif University of Technology Ebrahimi, Nazanin (Author) ; Simchi, Abdolreza (Supervisor) ; Akbarzadeh Changiz, Abbas (Co-Advisor)
    Abstract
    Phase transformation in Ni-Ti shape memory alloys (SAM) have been investigated quite frequently due to their shape recovery by thermal cycling. With emerging of nanotechnology, the martensitic/austenite phase transformation in SAM at nanoscale has become of interest for MEMS and NEMS applications. In this work, molecular dynamic simulation (MD) was utilized to study the phase transformation and shape memory effect in Ni-Ti nanowires. EAM/Alloy and EAM/FS potential functions were used. The potential energy versus temperature and time for the phase transformation was calculated and combined with the radius distribution function (RDF) in order to study the changes in the crystal structure.... 

    Modification of Surface Nanostructure and Mechanical Properties by Friction Stir Processing in Al 5083 with Al2O3 and Cu Particles

    , M.Sc. Thesis Sharif University of Technology Khaksari, Mehdi (Author) ; Kokabi, Amir Hossein (Supervisor) ; Akbarzadeh Changiz, Abbas (Supervisor)
    Abstract
    Al 5083 is a non-heat treatable alloy that widely used in the aerospace and automotive industry due to its low density and high strength. However, poor wearing behavior and low elastic modulus restrict its engineering applications. Metal matrix composites (MMCs) have advantages of high strength and modulus by reinforcement of second phase. Also, MMCs have excellent dimensional stability, damping capacity and wear, creep and fatigue resistances as compared with the corresponding monolithic alloys. Vast loss in ductility and toughness occurs by non- deformable ceramic reinforcements. For the surface engineering purposes, ceramic particles are added in the surface layers of components, whereas... 

    Structural and Microstructural Study on Al/Ti Intermetallic Sheets Produced by ARB

    , M.Sc. Thesis Sharif University of Technology Esmaeilizadeh, Reza (Author) ; Ekrami, Ali Akbar (Supervisor) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Due to special physical and mechanical properties of intermetallic compounds,somehow in between of the metallic and ceramic extremes, their applications are increased in different industries. Among these materials, titanium aluminides due to their low density, high specific strength and excellent corrosion and oxidation resistance has got more attention. Because of similar high temperature properties and lower density, these compounds are suitable alternatives for nickel base superalloys. Accumulative Roll Bonding (ARB) of pure metallic sheets and the following heat treatment in production of intermetallic compounds can be considered as a manufacturing process. The goal of this study is... 

    Ductility Enhancement of Accumulative Roll bonded Aluminum Sheet by Developing a Bimodal Grain Size Distribution

    , M.Sc. Thesis Sharif University of Technology Kourosh Khalili (Author) ; Seyyed Reyhani, Morteza (Supervisor) ; Akbarzadeh Changiz, Abbas (Supervisor)
    Abstract
    The goal of this project is production of composite laminated sheetswith bimodal microstructure using ARB process. It is planned to produce a laminated sheet having bimodal grain size distribution in microstructure to increase the formability while maintaining the strength. Two different aluminum alloys including AA 1050 and AA5083 were ARB processed up to 9 cycles, Then the ARB samples were annealed under controlled temperatures and times. Due to structural differences like stacking fault energy,stored cold work energy and solute atoms concentration, annealing ofThese two alloys lead to different recrystallized grain sizes. In order to evaluate the recovery and recrystallization behavior of... 

    Evaluation of Bonding and Mechanical Properties of Metal-Polymer Sheets Manufactured by Roll Bonding

    , Ph.D. Dissertation Sharif University of Technology Rezaei Anvar, Behrouz (Author) ; Akbarzadeh, Abbas (Supervisor) ; Kokabi, Amir Hossein (Co-Advisor)
    Abstract
    Emission of the greenhouse gases is a great concern and use of lightweight materials in transport vehicles has found a major importance in this respect. Metal/polymer laminated composites are of great interest due to their special mechanical properties and thoughness. Application of metal/polymer sheets is limited because of low bonding strength of metals and polymers in these sheets, which is not sufficient, to endure the stresses and strains during deformation processes such as deep drawing and bending. In this research, roll bonding of AA5052/Polypropylene sheets is investigated and the effects of bonding parameters on strength are evaluated and finally the bonding mechanisms during... 

    The Effects of Temperature, Strain Rate and Number of Passes on Ecap Processing of WE43 Magnesium Alloy

    , M.Sc. Thesis Sharif University of Technology Famil Hatami, Mohammad (Author) ; Karimi Taheri, Ali (Supervisor) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Equal Channel Angular Pressing (ECAP) is one of the most applicable severe plastic deformation procedures (SPD) which results in improvement of strength and ductility through grain refinement. WE43 magnesium alloy belongs to a group of alloys for medical industry because of its good biocompatibility. In this study, equal channel angular pressing was performed at different temperatures, strain rates and number of passes on strip-shape samples to achieve proper mechanical properties. Tensile properties, hardness and microstructural evolutions were evaluated and the results were analyzed according to the EDS test. Results shows that at 380 ℃ and 440 ℃ grain refinement was accomplished by... 

    An Investigation on Multistage Strain Aging Using Rolling Process on Mechanical and Formability of Stainless Steel 304L

    , M.Sc. Thesis Sharif University of Technology Mousavinia, Ali (Author) ; Karimi Taheri, Ali (Supervisor) ; Akbarzadeh Changiz, Abbas (Supervisor)
    Abstract
    Austenitic stainless steels have extensive and special mechanical properties because of austenite to α΄-martensite transformation due to plastic work. Obtaining a process path that provides maximum strength and flexibility and minimum α΄-martensite content (α΄-martensite increases corrosion current) in these steels is important in the industry. Applying the aging process after applying plastic strain (single-stage aging) results in an increase in strength of up to 200 MPa and an increase in hardness of up to 60 Vickers. However, single-stage aging does not cause significant changes in the amount of α΄-martensite in steel and in the temperature range of 400 to 500 ° C, it causes a slight... 

    High Saline Water Treatment by the Process of Membrane Distillation Combined with Solar Energy

    , M.Sc. Thesis Sharif University of Technology Shokrollahi, Milad (Author) ; Rajabi, Abbas (Supervisor) ; Musavi, Abbas (Supervisor)
    Abstract
    In this study, membrane distillation process was used for treatment of high salinity waters. The focus of this study is to simulate and build a setup of membrane distillation process. Since the membrane distillation process is based on the driving force of the temperature difference, the required temperature is provided by both the use of heaters and the use of solar energy. To increase the feed temperature by solar energy, a black polymer coating on the main membrane is used. The main membrane used in this process is PVDF polymer and the polymer coated on the surface is the PAN polymer. After simulating and constructing the laboratory setup, the influence of a variety of parameters on the... 

    Hot workability of a high carbon high chromium tool steel

    , Article Materials and Design ; Volume 46 , 2013 , Pages 654-659 ; 02641275 (ISSN) Akbarzadeh, A ; Naghdy, S ; Sharif University of Technology
    2013
    Abstract
    In this work, hot tension tests were conducted on as cast and wrought samples of a high carbon high chromium tool steel to study the hot workability under the rolling conditions. The flow curves illustrate the classical shape of dynamic recrystallization (DRX). It is observed that broken carbide nets in the wrought samples result in lower deformation activation energy 398. kJ/mol in comparison to the as cast samples 432. kJ/mol. Necking strains were calculated using the inflection point of the work-hardening (θ) vs. stress curves. Wrought samples show higher hot ductility and lower maximum stress than the as cast ones. It is shown that lower activation energy of deformation and lower stress... 

    Sensitivity analysis of torque transmission efficiency of a half-toroidal CVT

    , Article 2006 SAE World Congress, Detroit, MI, 3 April 2006 through 6 April 2006 ; 2006 ; 01487191 (ISSN) Akbarzadeh, S ; Zohoor, H ; Sharif University of Technology
    SAE International  2006
    Abstract
    In this research a computer model based on elasto hydrodynamic fluid film lubrication is developed in order to calculate the torque transmission efficiency of a half-toroidal CVT variator. Validation of this model is verified by comparing the experimental and the model results. Sensitivity of torque transmission efficiency to eleven parameters is investigated. These parameters are: dimensionless roller curvature, aspect ratio, half cone angle, fluid viscosity index, pressure constant for Roelands model, input rotational velocity, absolute viscosity at atmospheric pressure, Young modulus of disks and power rollers, Poisson ratio of disks and power rollers, number of power rollers and variator... 

    Optimizing the geometry of a half-toroidal CVT

    , Article Powertrain and Fluid Systems Conference and Exhibition, San Antonio, TX, 24 October 2005 through 27 October 2005 ; 2005 ; 01487191 (ISSN) Akbarzadeh, S ; Zohoor, H ; Sharif University of Technology
    SAE International  2005
    Abstract
    In this research a model is developed which calculates the torque transmission efficiency of a half-toroidal CVT as a function of variator geometry, gear ratio and input torque. The different criteria which are considered to be important in a half toroidal CVT performance are torque transmission efficiency, variator weight, roller fatigue life and bearing torque loss. Variation of geometrical characteristics such as roller curvature, number of power rollers, aspect ratio and half cone angle affect these criteria in different ways. Therefore, in order to find the optimal quantity for each geometrical parameter an optimization problem should be developed. The objective function of this...