Loading...
Search for: mohammadi-shodja--hossien
0.14 seconds

    Analytical Study of Electro-Elastic Fields in a Spherical Anisotropic Piezoelectric Medium under General Electromechanical Loading By Means of Tensor Spherical Harmonics

    , M.Sc. Thesis Sharif University of Technology Farsiani, Mohsen (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    In the past few decades piezoelectric materials have gained extensive applications in electromechanical devices and smart composite materials. Composite piezoelectric materials posses better piezoelectric effects as compared with the homogeneous piezoelectric materials. A special type of composite piezoelectric materials is multiphase spherical ensemble. Consider a set of (N + 1)-phase concentric spherical piezoelectric ensemble consisting of a core region encased by a sequence of nested spherical layers. Each phase is spherically isotropic, the polling direction of it, is radially oriented and it is also functionally graded piezoelectric material (FGPM) in the radial direction. This paper... 

    Surface and Interface Effects on the Elastic Fields of an Edge Dislocation Inside a Silicon Nanotube with Thin Siox Coating

    , M.Sc. Thesis Sharif University of Technology Azizi, Pegah (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    The exact analytical elastic fields within a double-walled silicon nano-tube with a thin layer of SiOx coating associated with surface/ interface effects as well as the classical theory of elasticity due to the presence of an edge dislocation with an arbitrary Burger’s vector and position inside of the silicon is determined via complex potential function method. Stress contours within surface elasticity and classical theory are given, and both theory results are compared. Then, the effects of surface Lamé Constants, magnitude and direction of Burger’s vector, shear modulus, nano-tube size, and position of the edge dislocation on the distribution of stress components are illustrated, and the... 

    SH-wave Propagation in phononic Crystals of Periodic Nanostructures with Deformable Interfaces

    , M.Sc. Thesis Sharif University of Technology Sanati, Mahsa (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    The aim of this study is to investigate the propagation of anti-plane shear waves in an elastic medium composed of periodic nanolayers (metamaterials) with deformable interfaces.Some of interesting properties of metamaterials are band-gaps and negative refraction angle.In nanolayered mediums the effect of interface becomes significant and classical continuum theory is not sufficient individualy. In this research by introducing 4 interface parameters and adding some equations to classical continuum theory, the possibilty of discontinuity of traction and displacement across the interface is provided and the effect of interface is considered. Then, a functional representing the energy of the... 

    Behavior of Composites Containing Multi-coated Nano-fibers with Interfacial Damage in Couple Stress Theory

    , Ph.D. Dissertation Sharif University of Technology Hashemian, Behdad (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    It is well-known that classical continuum theory has certain deficiencies in capturing the size effects and predicting the nanoscopic behavior of materials in the vicinity of nano-inhomogeneities and nano-defects with reasonable accuracy. Couple stress theory which is associated with an internal length scale for the medium is one of the higher order continuum theories capable of overcoming such difficulties. Since most reinforcements may not be perfectly bonded to their surrounding matrix, the perfect bonding condition is often inadequate in describing the physical and mechanical behavior of real composite materials. In this work, the problem of a nano-size fiber embedded in an unbounded... 

    Scattering of SH-Waves by a Cylindrical Multi Inhomogeneity Embedded in a Piezo-Electromagnetic Medium Using an Analytical Innovative Micromechanical Approach

    , Ph.D. Dissertation Sharif University of Technology Ordookhani, Ali (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    This work examines the problem of the fully coupled magneto-electro-elastic (MEE) scattering of SH-waves incident upon a heterogeneous MEE scatterer which is embedded in an unbounded medium. The scatterer consists of a circular core and a circular encapsulator with eccentricity. All three regions: the core, encapsulator, and the surrounding matrix have distinct MEE properties and fully coupled constitutive relations. The generated coupled MEE fields coexist simultaneously in all these regions without resort to any simplifying assumptions. The precise description of the multifunctionality involves the solution of three fully coupled partial differential equations in three different regions.... 

    Wave Propagation in Cubic Crystal Media within Surface Elasticity Theory

    , M.Sc. Thesis Sharif University of Technology Behnoud, Paria (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    The aim of this work is to investigate the surface effects on SH wave propagation in ultra-thin layers with body-centered cubic single-crystal and face-centered cubic single-crystal structures, as well as Love and Rayleigh surface waves propagation in a single crystalline bcc half-space solid.Due to the wide application of wave propagation in science and technology, this issue has attracted the attention of many researchers and engineers. Wave propagation is used in surface science, coustoelectronics, and non-destructive evaluations.In this study, ultra-thin layers have thicknesses between 2 and 6 nm. For such layers, the physical and mechanical effects of surface are not negligible.It is... 

    Eigenfield Theory for Grade Two Flexoelectric Composites with Periodic or Arbitrary Nanostructure and General Anisotropy

    , M.Sc. Thesis Sharif University of Technology Ghanimi, Zahra (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    Studying the behavior of electromechanical systems containing nanostructures, because of their widespread applications in the nanoscience and technology is of great interest. For this purpose, this work is devoted to analytical and exact determination of the electroelastic fields associated with periodic and arbitrary distributions of electromechanical nano inclusions and nano inhomogeneities of various shapes within electroelastic mediums of general anisotropy. Since classical continuum Theories are inadequate in accounting for size affects in nanostructures, a first strain gradient - first electric field gradient theory is applied. The present work considers Piezoelectric and Flexoelectric... 

    Numerical Modeling of a Nano Crack in Fcc Solids Using RKPM Based Dipolar Gradient Elasticity

    , M.Sc. Thesis Sharif University of Technology Shariatzadeh, Babak (Author) ; Mohammadi Shodja, Hosain (Supervisor)
    Abstract
    In many structures, crack creation is one of the most significant fracture mechanisms. To predict these fracture mechanisms accurate numerical modeling is necssary. Finite Element Method (FEM) is one of the substantial methods in analysis of numerical fracture problems in recent past decades. But, this method has difficulties in remeshing of elements in each step of calculation in fracture mechanics or large deformation analysis. Therefore, the theory was defined that, without using elements, just with setting of characteristics nodes in geometry of problem, the differential equations can be solved. These methods are called Meshfree or Meshless methods. RKPM is a new meshfree method for... 

    Innovative Theories of Micro and Nano Ellipsoidal Inclusion and Inhomogeneity in Magneto-electro-elastic Media with General Anisotropy

    , Ph.D. Dissertation Sharif University of Technology Rashidinejad, Ehsan (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    In the current work, the two- and three-dimensional electro-elastic fields of periodically as well as arbitrarily distributed interacting quantum wires (QWRs) and interacting quantum dots (QDs) of arbitrary shapes within a piezoelectric matrix are studied analytically. The lattice mismatch between the QWR/QD and the barrier is accounted through prescribing an initial misfit strain field within the QWR/QD. The distinction between the electro-mechanical properties of the QWR/QD and those of the barrier is treated by introducing a novel electro-mechanical equivalent inclusion method in Fourier space (FEMEIM). Moreover, the theory can readily treat cases where the QWRs/QDs are multi-phase or... 

    Elastic field of a nano disk shape defect in an fcc thin film

    , Article 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE NEMS 2007, Bangkok, 16 January 2007 through 19 January 2007 ; 2007 , Pages 142-146 ; 1424406102 (ISBN) ; 9781424406104 (ISBN) Mohammadi Shodja, H ; Pahlevani, L ; Hamed, E ; Sharif University of Technology
    2007
    Abstract
    In this paper, we develop a theory to study the nano defects of various geometries within thin films. The considered thin films have face centered cubic (fee) structure. The eigenstrain method is combined with the long-range Sutton-Chen (SC) inter-atomic potential function which is appropriate for fee crystals. The disturbance caused by a defect in a thin film is determined from the equilibrium equation using the discrete Fourier transformation. The disturbed field is also determined using three dimensional (3D) Molecular Dynamics (MD) simulation in which the constant NVT ensemble is applied to the atomic system. For illustration, the problem of nano disk shape defect in thin film is studied... 

    Calculation of the Energy Release Rate of Nano-Cracks in FCC Materials Via the Many Body Atomic Scale FEM

    , M.Sc. Thesis Sharif University of Technology Ostad Hossein, Alireza (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    Since the classical continuum theory fails to deal with the problems associated with defects, stress concentrators, and relevant deformation phenomena in solids, alternative approaches that can detect the atomistic nature of materials' fracture are required. The deficiency of the capture the size effect which yields delusively high values for some components of the stress field right on the edge of the stress concentrators, and its weakness in describing the complex interaction between small inhomogeneities, cracks and the like when they are only a few nanometers apart, are among some of the disadvantages of the classical approach. In recent years, however, atomistic methods are emerging to... 

    Analysis of a Lamellar Inhomogeneity Via Repordusing Kernel Particle Method

    , M.Sc. Thesis Sharif University of Technology Raeis Hosseiny, Aydin (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    Nowadays, the excellent technological applications of composites have attracted the attentions of industry and numerous scientists. They are advantageous for their high tensile modulus, strength, and promising electrical and thermal properties. In applying the approach of lamellar inhomogeneity to real composites, the micro-geometries of the reinforcement must be considered such that they can be approximated as limiting case of an ellipsoid. In vapor grown carbon nanofiber, the fiber may have a diameter of about 150nm and length of 10-20 µm [1]. The modulus of carbon nanofiber is normally in the range of 100-600 GPa and sometimes even higher, whereas the modulus of some polymers is usually... 

    Numerical Analysis of a Plate Containing Multiple Circular Holes Via RKPM

    , M.Sc. Thesis Sharif University of Technology Soltani Mohammadi, Siavash (Author) ; Mohammdi Shodja, Hossein (Supervisor)
    Abstract
    In this thesis, some new models have been solved via RKPM method, which is one of the meshfree methods family. These models have never been solved via meshfree methods and their analytical solutions do not exist. At first, the RKPM shape functions and their first derivative formulation in 1D and 2D have been presented and then by using FORTRAN program, the shape functions and their first derivative have been obtained. To verifying the code some functions have been reproduced. In the next step by using the governing equations and penalty method whose formulation exists in chapter 2; some famous examples in linear elasticity have been solved via RKPM to verify the FORTRAN code. At last; some... 

    Determination of the Elastic Fields of Eliptic Inhomogeneities and Inclusions in Anti-Plane Couple Stress Elasticity Using RKPM

    , M.Sc. Thesis Sharif University of Technology Tahaei Yaghoubi, Saba (Author) ; Mohammadi Shodja,Hossain (Supervisor)
    Abstract
    In this research, circular and elliptic inhomogeneities are modeled using a numerical meshless method named RKPM. A newly developed accurate and simple method called augmented corrected collocation method, which was previously applied in order to model material discontinuities in the framework of classical continuum theory, is used in combination with the penalty method, considering couple stress elasticity and in micro or nano scales for the first time, where the classical continuum theory has certain shortcomings in predicting the behavior of materials. Simulating nano-composites subjected to anti-plane stresses and comparing the analytical and numerical results show that the augmented... 

    Studying the Interaction Between Dislocation Sandin Homogeneities in Nano-Scale, by Incorporating Surface Effect

    , M.Sc. Thesis Sharif University of Technology Ahmadzadeh Bakhshayesh, Hossein (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    By considering the effect of surface/interface stress, classical problems of the interaction between dislocations and inhomogeneities are addressed. Especifically two distinct problems are solved, the first one is consisted of an edge dislocation located near an elliptical nano-inhomogeneity and the second one hasa screw dislocation laid in the core-shell nanowire. The stress field as well as the image force on the dislocation are calculated and discussed in detail. Results show that by decreasing the dimension of the problem to nano-scale, the differences between classical elasticity and surface approachincrease rapidly. By considering the effect of the surface/interface stress, new... 

    Axisymmetric contact of a rigid inclusion embedded at the interface of a piezoelectric bimaterial

    , Article Quarterly Journal of Mechanics and Applied Mathematics ; Volume 62, Issue 3 , 2009 , Pages 281-295 ; 00335614 (ISSN) Eskandari, M ; Moeini Ardakani, S ; Mohammadi Shodja, H ; Sharif University of Technology
    2009
    Abstract
    The axisymmetric contact problem of a rigid inclusion embedded in the piezoelectric bimaterial frictionless interface subjected to simultaneous far-field compression and electric displacement is addressed. With the aid of a robust technique, the coupled governing integral equations of this mixed boundary-value problem are reduced to decoupled Fredholm integral equations with a constraint equation. A useful limiting case for the contact problem of transversely isotropic bimaterials is addressed. The present solution is analytically in agreement with the existing solution for an isotropic bimaterial. Selected numerical results of interest to engineering applications including the radius of... 

    Surface/Interface Effects on The Scattering of In-Plane Elastic Waves by a Multi-Coated Nanofiber

    , M.Sc. Thesis Sharif University of Technology Taheri Jam, Masoud (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    In the framework of surface elasticity theory, the scattering of in-plane elastic waves by a multicoated nanofiber embedded in an elastic matrix is studied. Atoms near an interface experience a local environment different from it within the bulk. Going from macro to nano dimensions, surface to volume ratio increases significantly. Thus, on this scale it is important to consider the surface/interface properties as well as the bulk properties. In this dissertation, the surface/interface is modeled by a very thin layer in which the traction and displacement are discontinuous. Effects of surface/interface parameters on the dynamic stress concentration factor (DSCF) and scattering cross section... 

    Accurate Analytical Formulation of the Electro-elastic Fields of the Nanosized Quantum Wires and Guantum Dots in Piezoelectric Media with General Anisotropy

    , M.Sc. Thesis Sharif University of Technology Marashi, Saeede Sadat (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    The electro-elastic fields of nano-sized piezoelectric structures are considered based on the non-classical continuum theory. Nowadays because of increasing the application of piezoelectric materials in nano technology and exclusive properties of this kind of materials, they can use as the ingredients of electromechanical systems. Therefore, the determination of induced electro-mechanical fields is important. In this study the constitutive equations based on non-classical continuum theory and general anisotropy for the elastic, piezoelectric and dielectric tensors are considered, and the electromechanical fields are determined using the micromechanical method. Furthermore, the size effects... 

    Study of the Elastodynamic Fields due to the Scattering of P-Waves by a Buried Non-Uniformly Coated Tunnel

    , Ph.D. Dissertation Sharif University of Technology Massoumi Goudarzi, Amin (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    With the progress of engineering science, the development of underground spaces and buried tunnels has witnessed remarkable expansion. Considering the frequency of hazardous events such as earthquakes and unforeseen consequences arising from underground activities and geology in underground engineering, the determination of the Dynamic Stress Concentration Factor (DSCF) has been widely recognized as a crucial factor in the study and design of tunnels and underground structures. It is also extensively considered in evaluating their damage. The investigation of wave dispersion and determination of the stress concentration factor was first proposed by Sezawa (1927). In this study, the... 

    Axisymmetric Contact of a Rigid Inclusion Embedded at the Interface of a Piezoelectric Bimaterial

    , M.Sc. Thesis Sharif University of Technology Moeini Ardakani, Sina (Author) ; Mohammadi Shodja, Hossain (Supervisor)
    Abstract
    The axisymmetric contact problem of a rigid inclusion embedded in the piezoelectric biomaterial frictionless interface subjected to simultaneous far-field compression and electric displacement is addressed. With the aid of a robust technique, the coupled governing integral equations of this mixed boundary-value problem are reduced to decoupled Fredholm integral equations with a constraint equation. A useful limiting case for the contact problem of transversely isotropic bimaterials is addressed. The present solution is analytically in agreement with the existing solution for an isotropic bimaterial. Selected numerical results of interest to engineering applications including the radius of...