Loading...
Search for: shahriari-darabad--zahra
0.131 seconds

    γ' Precipitate dissolution during heat treatment of nimonic 115 superalloy

    , Article Materials and Manufacturing Processes ; Volume 24, Issue 5 , 2009 , Pages 559-563 ; 10426914 (ISSN) Shahriari, D ; Sadeghi, M. H ; Akbarzadeh, A ; Sharif University of Technology
    2009
    Abstract
    In precipitation hardenable materials, it is desirable to determine the precipitate dissolution temperature for homogenizing the microstructure by controlling the size and distribution of the precipitates. In this research, differential thermal analysis, dilatometry technique, heat treatments followed by microstructure evaluation were used to determine the -γ' dissolution temperature of Nimonic 115. It is assumed that the variation of enthalpy is governed by the changes in y volume fraction and γ concentration with time and temperature, and any contribution of the coarsening of γ' is neglected. The values obtained for the solvus temperature of γ precipitates by the three methods are all in... 

    Two-Dimensional Dictionary Learning and its Application in Image Denoising

    , M.Sc. Thesis Sharif University of Technology Shahriari Mehr, Firooz (Author) ; Babaiezadeh, Masoud (Supervisor)
    Abstract
    Sparse representation and consequently, dictionary learning have been two of the great importance topics in signal processing problems for the last two decades. In sparse representation, each signal has to be represented as a linear combination of some basic signals, which are called atoms, and their collection is called a dictionary. To put it in other words, if complete dictionaries such as Fourier or Wavelet dictionaries are used for the representation of signals, the representation will be unique, but not sparse. On the other hand, if overcomplete dictionaries are used, we will confront with too many representations, and the goal of sparse representation is to find the sparsest one. ... 

    RT-UNNID: A practical solution to real-time network-based intrusion detection using unsupervised neural networks

    , Article Computers and Security ; Volume 25, Issue 6 , 2006 , Pages 459-468 ; 01674048 (ISSN) Amini, M ; Jalili, R ; Shahriari, H. R ; Sharif University of Technology
    2006
    Abstract
    With the growing rate of network attacks, intelligent methods for detecting new attacks have attracted increasing interest. The RT-UNNID system, introduced in this paper, is one such system, capable of intelligent real-time intrusion detection using unsupervised neural networks. Unsupervised neural nets can improve their analysis of new data over time without retraining. In previous work, we evaluated Adaptive Resonance Theory (ART) and Self-Organizing Map (SOM) neural networks using offline data. In this paper, we present a real-time solution using unsupervised neural nets to detect known and new attacks in network traffic. We evaluated our approach using 27 types of attack, and observed... 

    Discrete formulation for two-dimensional multigroup neutron diffusion equations

    , Article Annals of Nuclear Energy ; Volume 31, Issue 3 , 2004 , Pages 231-253 ; 03064549 (ISSN) Vosoughi, N ; Salehi, A. A ; Shahriari, M ; Sharif University of Technology
    2004
    Abstract
    The objective of this paper is to introduce a new numerical method for neutronic calculation in a reactor core. This method can produce the final finite form of the neutron diffusion equation by classifying the neutronic variables and using two kinds of cell complexes without starting from the conventional differential form of the neutron diffusion equation. The method with linear interpolation produces the same convergence as the linear continuous finite element method. The quadratic interpolation is proven; the convergence order depends on the shape of the dual cell. The maximum convergence order is achieved by choosing the dual cell based on two Gauss' points. The accuracy of the method... 

    An efficient diagnosis method for data mining on single PD pulses of transformer insulation defect models

    , Article IEEE Transactions on Dielectrics and Electrical Insulation ; Volume 20, Issue 6 , 2013 , Pages 2061-2072 ; 10709878 (ISSN) Darabad, V. P ; Vakilian, M ; Phung, B. T ; Blackburn, T. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2013
    Abstract
    Reviewing the various Partial Discharges (PD data mining researches which have been reported so far, this study compares the performance of different feature spaces and different classifiers employed for PD classification in insulation condition monitoring of power transformers. In this process, first a knowledge basis is developed through construction of 4 different types of PD models in the high voltage laboratory. Background noise is considered as one class in this knowledge basis. The high frequency time domain current signals of high voltage equipment are captured over one power frequency cycle. The single PD activities within this captured signal are extracted by application of a... 

    An efficient PD data mining method for power transformer defect models using SOM technique

    , Article International Journal of Electrical Power and Energy Systems ; Volume 71 , October , 2015 , Pages 373-382 ; 01420615 (ISSN) Darabad, V. P ; Vakilian, M ; Blackburn, T. R ; Phung, B. T ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Suggestion and application of a set of new features for on-line Partial Discharge (PD) monitoring, where there is no information about the type of PD is a challenging task for condition assessment of power equipments, such as a power transformer. This is looked for in this paper. So far, in past various techniques have been employed to develop a comprehensive PD monitoring system, however limited success has been achieved. One of the challenging issues in this field is the discovering of proper features capable of differentiating the involvement of possible types of PD sources. In order to examine the efficiency of the method established in this paper, which is based on application of a set... 

    Using Nonlinear Effects of Light for Optical Signal Processing

    , M.Sc. Thesis Sharif University of Technology Shatery, Farshid (Author) ; Kavehvash, Zahra (Supervisor)
    Abstract
    Ultrafast signal processing in time-domain with high resolution and reconfigura-bility is a challenging task. This paper, for the first time, introduces a time-varying metasurface consisting of graphene microribbon array for implementing time-lens in the terahertz domain. Given that the surface conductivity of graphene is proportional to the Fermi energy level in the THz regime, it is possible to change the phase property of the incident electromagnetic pulse by changing the Fermi level while the Fermi level itself is a function of voltage. Upon this fact, a quadratic temporal phase modulator, namely time-lens has been realized. This phase modulation is applied to the impinging signal in the... 

    Theoretical and Computational Investigation of Quantum Plasmonic Properties of Nanocluster Dimers

    , M.Sc. Thesis Sharif University of Technology Mahmoudi, Erfan (Author) ; Jamshidi, Zahra (Supervisor)
    Abstract
    In today's era, metal nanoparticles play an important role in technologies emerging from different sciences, such as chemistry, physics, optics, material science, due to their unique characteristics. In the development of nanooptics science, it can be said that metal nanoparticles play an important role. The ability of conductive electrons collective oscillation causes surface charge density fluctuations in nanoparticles, this phenomenon is known as surface plasmons. Surface plasmons are surprisingly coupled with light and cause the significant increase in the intensity of optical fields induced in nanoparticles. Therefore, with the presence of localized surface plasmons or plasmon... 

    Theoretical Investigation of Ab-initio MD Approach to Increase the Efficiency and Accuracy of VCD Spectrum Calculation

    , M.Sc. Thesis Sharif University of Technology Hadi, Hossein (Author) ; Jamshidi, Zahra (Supervisor)
    Abstract
    Understanding of the Molecules is the main purpose of the chemistry. Ab-initio molecular dynamics (AIMD) as a branch of the computational chemistry, tries to give us a deep comprehension of the molecule, and its chemical, physical and optical activities. This comprehension, relies on the accuracy of quantum mechanics, in addition to the speed of the classical mechanics. The mixing of the quantum mechanics and the classical mechanics could simulate activities of the atoms in the time-domain, provided the mixing is done with precaution. This, in turn, helps us to forecast the response of a molecule in different situations, and also translating the macroscopic phenomena in a nanoscopic... 

    Investigation of Plasmonic Excitation in Carbonic Nanostructures Within Near-IR

    , M.Sc. Thesis Sharif University of Technology Madadi, Mahkam (Author) ; Jamshidi, Zahra (Supervisor)
    Abstract
    To date, the plasmonic properties of many metallic and semi-conducting materials have been investigated and used in various industries. One of the plasmonic material categories that have always been considered is polycyclic aromatic hydrocarbon or PAH, whose plasmonic resonance energy depends on the charge state of the molecule. In this regard, it is easy to change the plasmonic resonance energy via changing the induced charge, which is a unique feature of the mentioned materials. In addition, plasmonic structures with excitations in the infrared region are able to enhance the vibration intensity of absorbed molecules by increasing the electric field around themselves. Therefore, they have... 

    Using Simulation-Optimization Approach for Fire Station Location and Vehicle Assignment Problem: a Case Study in Tehran, Iran

    , M.Sc. Thesis Sharif University of Technology Pirmohammadi, Ali (Author) ; Amini, Zahra (Supervisor)
    Abstract
    In this research, the problem of locating fire stations and allocating equipment has been studied and a simulation-optimization approach has been presented to solve the problem. The mathematical models of this research were developed based on the idea of the randomness of the covered demand and the maximum expected coverage model. In these models, the issue of non-availability of equipment to cover accidents, the random nature of accidents, various fire incidents and the equipment needed to cover them are considered. Two mathematical models with deterministic and non-deterministic approach with different scenarios for demand are proposed. The non-deterministic model is developed with the aim... 

    Introducing An Integrated Framework For Solving The Fleet Planning Problem Using A Simulation-Optimization Approach

    , M.Sc. Thesis Sharif University of Technology Sahebi, Armin (Author) ; Amini, Zahra (Supervisor)
    Abstract
    One of the main concerns of industrial companies’ managers is providing an efficient logistics system. To achieve an efficient logistics system, the fleet planning problem is studied by many researchers in recent years. This problem consists of multiple sub-problems at three levels: operational, tactical, and strategic. These sub-problems are closely related to each other and need to be studied and addressed in an integrated manner. In this research, an attempt is made to provide an integrated framework to solve the vehicle routing problem (operational), outsourcing problem (tactical), and fleet composition problem (strategic). These problems have various uncertainties, including customer... 

    An efficient partial discharge pattern recognition method using texture analysis for transformer defect models

    , Article International Transactions on Electrical Energy Systems ; Volume 28, Issue 7 , February , 2018 ; 20507038 (ISSN) Rostaminia, R ; Saniei, M ; Vakilian, M ; Mortazavi, S. S ; Parvin Darabad, V ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    Partial discharge (PD) measurement is one of the best methods for condition monitoring of transformers. In this paper, we use 5 different types of defects as follows: scratch on winding insulation, bubble in oil, moisture in insulation paper, a very small free metal particle in the transformer tank, and a fixed sharp metal point on the transformer tank, for our PD-related studies. Each type of defect is implemented into 1 of the 5 identical transformer models, which had been developed in the authors' recent work. The continuous wavelet transform is applied to each related measured time-domain PD signals. This process results in an image, for each PD pulse in the time-frequency domain. Using... 

    Synthesis of Nano Ceramic Powders for Drug Delivery and It’s Release

    , M.Sc. Thesis Sharif University of Technology Shahriari, Rezvan (Author) ; Nemati, Ali (Supervisor) ; Dobakhti, Faramarz (Supervisor)
    Abstract
    In this project, Fe3O4 nanoparticles were synthesized and coated with different polymeric materials for drug delivery application. For this purpose, water dispersible oleic acid(OA)- pluronic block copolymer coated magnetite iron oxide nanoparticles were synthesized that can be loaded with proper doses of cephalexin. Our data indicated that formulation of iron oxide nanoparticles was developed by optimizing the amount of oleic acid required to coat iron oxide nanoparticles and then by optimizing the amount of pluronic required to form an aqueous dispersion of oleic acid coated nanoparticles. Synthesis of magnetite nanoparticles was done by the addition of a strong base (NH4OH) to ferrous... 

    Local Routing in Geometric Networks

    , M.Sc. Thesis Sharif University of Technology Shahriari, Amir Hossein (Author) ; Abam, Mohammad Ali (Supervisor)
    Abstract
    A geometric network is a weighted undirected graph whose vertices are points in the plane and edge weights are equal to the Euclidean distance of its endpoints. Routing is one of the important problems in graph theory and if the underlying graph is a geometric network,it has applications in different fields including transportation, communication networks and robotics. In many applications the graph data is not accessible or finding the optimal path is costly. Therefore local routing is used. In local routing the goal is that at each vertex,the routing must be done only given the neighbours of the current vertex, the origin and the destination of the route. Geometric spanner is a subgraph of... 

    A Survey on Searchable Symmetric Encryption Schemes

    , M.Sc. Thesis Sharif University of Technology Sajadieh, Zahra Sadat (Author) ; Khazaei, Shahram (Supervisor)
    Abstract
    Using “Searchable Encryption” enables us to encrypt the data, while preserving the possibility of running search queries. One of the most important applications of the mentioned is in Cloud Storage. As users do not trust the Cloud space, they are not inclined to store their data on the Could. The solution to this problem is of course, Cryptography. However, ordinary Cryptography methods, eliminate the data’s searchability. Hence, we need encryption schemes that code the data while retaining their searchability. So far, various schemes has been proposed that differ in their performance, security level, and usage. In this thesis, we aim to discuss and analyze these methods  

    Temporal Depth Imaging Based on Dispersion

    , M.Sc. Thesis Sharif University of Technology Behzadfar, Shiva (Author) ; Kavehvash, Zahra (Supervisor)
    Abstract
    In this thesis, the aim is designing an optical temporal imaging system. In recent years, due to many applications, including the receipt of high-rate data by slow receivers and compensation of dispersion in telecommunication systems, researchers have considered the topic of temporal imaging. This field of research is based on dispersion, electro-optical modulators or time lenses and space-time theory. By modeling dispersion properties as a depth dimension and taking ideas from three-dimensional spatial imaging systems we intended to increase the temporal resolution and depth of focus of the structure. We also present a novel technique for multiplexing and demultiplexing telecommunication... 

    Time Domain Optical Signal Processing Based on the Duality Between Dispersion and Diffraction

    , M.Sc. Thesis Sharif University of Technology Eksiri, Fatemeh (Author) ; Kavehvash, Zahra (Supervisor)
    Abstract
    In the last decades, due to the growing demand of transferring information with high transmission rates, the complexity and development of telecommunication and optical systems is remarkable. Researchers around the world attempt to explore extraordinary potential of light to process information. In the mid-19th century, scientists discovered a mathematical symmetry between the spatial and temporal optics fields, which originated from the similarity of equations governing the paraxial diffraction of beams and the dispersion of narrow-band pulses known as space– time duality in scientific texts. This new approach provides more advanced and potent methods to temporal processing and... 

    Improving the Stability of an Urban Traffic Network with Limited Data by Using Percolation Theory and Dynamic Clustering

    , M.Sc. Thesis Sharif University of Technology Hassanzadeh, Ehsan (Author) ; Amini, Zahra (Supervisor)
    Abstract
    One of the most vital aspects of understanding the traffic phenomenon is scrutinizing the traffic transition status, such as the transition from free flow to congestion. The Percolation Theory is a renowned theory focusing on analyzing various network types to detect the critical zones, which are the zones including links that are important to control to improve stability. By calculating the quality indices of network links, the Percolation Theory can simulate the traffic percolation propagation in the network and determine possible critical zones for further analysis. Most studies in this field assume access to data of several traffic parameters for the entire transportation network, such... 

    Modification of Biomedical Imaging Methods in Short Wavelength Infrared Window

    , Ph.D. Dissertation Sharif University of Technology Hassan Abbasi (Author) ; Kavehvash, Zahra (Supervisor)
    Abstract
    In recent years, optical biomedical imaging techniques show great potential in noninvasive imaging. Although these methods have many advantages over other biomedical imaging methods (such as Computerized Tomography (CT), Magnetic Resonance Imaging (MRI) and etc.), these techniques confront with some problems such as optical scattering, light absorption and etc. For in vivo imaging, the short-wavelength infrared region (SWIR; 1,000–2,000 nm) provides several advantages over the visible and near-infrared regions: general lack of auto-fluorescence, low light absorption by blood and tissue, and reduced scattering. In this thesis we want to analyze the traditional IR imaging techniques and...