Loading...
Search for: abbasi--pezhman
0.105 seconds

    Development of anatomically based structure for human acinus by Lindenmayer system: accurate model for gas exchange in human lung

    , Article European Physical Journal Plus ; Volume 136, Issue 8 , 2021 ; 21905444 (ISSN) Abbasi, Z ; Bozorgmehry Boozarjomhery, R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Acinar region consists of ~ 33 million airways and provides low resistance against the gas exchange with blood. A three-dimensional anatomically accurate model of pulmonary acinus is useful for simulation of fluid distribution, gas exchange, particle deposition, drug delivery, and detection of structural abnormalities in the lungs. In this study, the stochastic parametric Lindenmayer system has been used to generate the respiratory airways filling a given space. This model takes into account the mechanical properties and details of human acinus which can accurately predict the gas distribution throughout the lungs for the first time. The procedure of finding the dimensions and orientations... 

    Modeling of human conducting airways by stochastic parametric L-system

    , Article European Physical Journal Plus ; Volume 136, Issue 2 , 2021 ; 21905444 (ISSN) Abbasi, Z ; Bozorgmehry Boozarjomehry, R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Gas exchange, particle deposition, and drug delivery in the human lungs depend on the structure of the human bronchial tree. The conducting airways occupy the main portion of the human lungs and transport air from outside into pulmonary acini where the O2–CO2 exchange with blood occurs. Therefore, the generation of three-dimensional accurate structure of the conducting airways is required for simulation of the transport phenomena in the human respiratory system. The present study proposes an intelligent method for generation of conducting airways based on stochastic parametric Lindenmayer system (L-system). The conducting airways grow into the bronchopulmonary segments simultaneously using... 

    Various reduced-order surrogate models for fluid flow and mass transfer in human bronchial tree

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 20, Issue 6 , 2021 , Pages 2203-2226 ; 16177959 (ISSN) Abbasi, Z ; Bozorgmehry Boozarjomehry, R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    The bronchial tree plays a main role in the human respiratory system because the air distribution throughout the lungs and gas exchange with blood occur in the airways whose dimensions vary from several centimeters to micrometers. Organization of about 60,000 conducting airways and 33 million respiratory airways in a limited space results in a complex structure. Due to this inherent complexity and a high number of airways, using target-oriented dimensional reduction is inevitable. In addition, there is no general reduced-order model for various types of problems. This necessitates coming up with an appropriate model from a variety of different reduced-order models to solve the desired... 

    Fast and accurate multiscale reduced-order model for prediction of multibreath washout curves of human respiratory system

    , Article Industrial and Engineering Chemistry Research ; Volume 60, Issue 10 , 2021 , Pages 4131-4141 ; 08885885 (ISSN) Abbasi, Z ; Boozarjomehry, R. B ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    The curve of exhaled inert gas concentration against exhaled volume is called gas washout curve. The slope at the end part of gas washout curve (Sn) is a measure of structural abnormalities. Sn depends on the spatial concentration distribution and dynamic of gas washout, which depends on several mechanisms including asymmetry of airways, nonhomogeneous ventilation, sequential emptying, and gas exchange with blood. Due to a large number of airways in human lungs, using simplified models is inevitable. On the other hand, these simplified models cannot capture some of the mentioned mechanisms and subsequently were not able to predict experimental trend of change in Sn with breath number in... 

    Development of anatomically based structure for human acinus by Lindenmayer system: accurate model for gas exchange in human lung

    , Article European Physical Journal Plus ; Volume 136, Issue 8 , 2021 ; 21905444 (ISSN) Abbasi, Z ; Bozorgmehry Boozarjomhery, R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Acinar region consists of ~ 33 million airways and provides low resistance against the gas exchange with blood. A three-dimensional anatomically accurate model of pulmonary acinus is useful for simulation of fluid distribution, gas exchange, particle deposition, drug delivery, and detection of structural abnormalities in the lungs. In this study, the stochastic parametric Lindenmayer system has been used to generate the respiratory airways filling a given space. This model takes into account the mechanical properties and details of human acinus which can accurately predict the gas distribution throughout the lungs for the first time. The procedure of finding the dimensions and orientations... 

    Modeling of human conducting airways by stochastic parametric L-system

    , Article European Physical Journal Plus ; Volume 136, Issue 2 , 2021 ; 21905444 (ISSN) Abbasi, Z ; Bozorgmehry Boozarjomehry, R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Gas exchange, particle deposition, and drug delivery in the human lungs depend on the structure of the human bronchial tree. The conducting airways occupy the main portion of the human lungs and transport air from outside into pulmonary acini where the O2–CO2 exchange with blood occurs. Therefore, the generation of three-dimensional accurate structure of the conducting airways is required for simulation of the transport phenomena in the human respiratory system. The present study proposes an intelligent method for generation of conducting airways based on stochastic parametric Lindenmayer system (L-system). The conducting airways grow into the bronchopulmonary segments simultaneously using... 

    Introduction of an Applied Method for Electrical Impedance Tomography

    , Ph.D. Dissertation Sharif University of Technology Abbasi, Ata (Author) ; Vosoughi Vahdat, Bijan (Supervisor)
    Abstract
    Electrical impedance tomography is considered as medical and industrial imaging methods which is inexpensive and safer than other imaging methods, but has low quality results. The purpose of this study is providing a practical method to increase its quality. Image reconstruction in EIT always is encountered with both direct and inverse problem. In the forward problem electric potential distribution is achieved from known distribution of electrical impedance and currents, but in the inverse problem, identifying of electrical impedance distribution is the target which is achieved by known electric potential and current distribution. In fact, solving inverse problem results the image... 

    Simulation of Heat Transfer in Nanoscale Flow Using Molecular Dynamics

    , M.Sc. Thesis Sharif University of Technology Abbasi, Hossein Reza (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    We investigate heat transfer between parallel plates separated by liquid argon using three-dimensional molecular dynamics (MD) simulations incorporating with 6-12 Lennard-Jones potential between molecule pairs. We use thermal walls constructed from the oscillating molecules, which are connected to their original positions using linear spring forces. Channel walls are maintained at specific temperatures using a recently developed interactive thermal wall model. This approach is much more effective than the one which uses a fixed lattice wall modeling to simulate the heat transfer between wall and fluid. Heat flux and temperature distribution in nanochannels are calculated for channel height... 

    On Proofs and Some Consequences of Serre’s Conjecture on Projective Modules

    , M.Sc. Thesis Sharif University of Technology Abbasi Fakhr, Jalil (Author) ; Jafari, Amir (Supervisor)
    Abstract
    Jean-Pierre Serre in 1955, in his famous article “Faisceaux Algébriques Cohérents” asked if there is any finitely generated projective module on polynomial rings which is not free. Or equivalently: is there any non-trivial algebraic vector bundle over an affine space? The negative answer to this question is known as Serre’s conjecture and it was an open problem in algebra and affine algebraic geometry until 1976, when it was proved independently by Quillen and Suslin. The challenge of solving this question and its consequences led to a vast amount of research in commutative algebra, homological algebra and algebraic K-theory and inspired generalizations and similar questions. In this thesis... 

    Design and Simulation of ELoran Receiver

    , M.Sc. Thesis Sharif University of Technology Abbasi, Fatemeh (Author) ; Fotowat Ahmadi, Ali (Supervisor)
    Abstract
    In recent years, eLoran system has been introduced as backup to global navigation systems like GPS, because of their vulnerability. eLoran is a low frequency (100 kHz) system. Its long wavelength allows indoor positioning.
    Main eLoran advantages rather than Loran-C are: better accuracy (near 10m), using 9th pulse positioning modulation (PPM) as loran data channel (LDC) and all-in-view receivers
    In this thesis, eLoran pulses are simulated in GRI. Also, a new analoge-digital circuit for faster pulse detection is developed.
    Also, it is proved that an oscillator with same frequency and phase as enterance signal, responses faster than a band pass filter and envelope detector. So, a... 

    Scene Detection and Analysis by Image Classification in Specific Classes

    , M.Sc. Thesis Sharif University of Technology Abbasi Dinani, Mina (Author) ; Gholampour, Iman (Supervisor)
    Abstract
    Traffic density estimation is one of the most challenging problems in Intelligent Transportation Systems. One of the important traffic information that is broadcasted to drivers is Traffic Density information. In many traffic control centers; human operators are responsible for estimating traffic density from captured video data. Increasing traffic cameras and constraint number of operators introduce an updating delay to broadcasted information. So it is important to have an automatic traffic density estimation system. In this thesis, machine vision is used to solve this problem. Supervised Image classification is our approach. In supervised Image classification, images are classified to... 

    Theoretical and Experimental Analysis of Fluid Sloshing on a Flying Object

    , M.Sc. Thesis Sharif University of Technology Abbasi, Mohammad Hossein (Author) ; Durali, Mohammad (Supervisor)
    Abstract
    Slosh phenomenon is described as the motion of the fluid’s free surface in a tank or partially-filled container. This motion can induce undesired forces that can change the path of a vehicle. In some liquid carrying vehicles these undesired changes is sensed by the driver or control system and can lead to instability. Some examples of this phenomenon are aircrafts, rockets, ships and fuel carrier trucks.
    In this project, a coupling between the dynamics of the vehicle and the contained fluid is implemented for in depth understanding of the interactions. This is done by Co-Simulation. With the help of Co-Simulation, corrective control actions can be taken and the design of more powerful... 

    Sending a laplacian source using hybrid digital-analog codes

    , Article IEEE Transactions on Communications ; Vol. 62, issue. 7 , 2014 , p. 2544-2557 Abbasi, F ; Aghagolzadeh, A ; Behroozi, H ; Sharif University of Technology
    2014
    Abstract
    In this paper, we study transmission of a memoryless Laplacian source over three types of channels: additive white Laplacian noise (AWLN), additive white Gaussian noise (AWGN), and slow flat-fading Rayleigh channels under both bandwidth compression and bandwidth expansion. For this purpose, we analyze two well-known hybrid digital-analog (HDA) joint source-channel coding schemes for bandwidth compression and one for bandwidth expansion. Then we obtain achievable (absolute-error) distortion regions of the HDA schemes for the matched signal-to-noise ratio (SNR) case as well as the mismatched SNR scenario. Using numerical examples, it is shown that these schemes can achieve a distortion very... 

    Online Unit Clustering in Two Dimensions

    , M.Sc. Thesis Sharif University of Technology Abbasi, Mohsen (Author) ; Zarrabi-Zadeh, Hamid (Supervisor)
    Abstract
    In the unit clustering problem, given a set of points on the plane, the goal is to group these points into minimum number of clusters of unit size. In the online version, the points arrive one by one and upon each point’s arrival, it must be assigned to some cluster. Another related problem is online unit covering in which moving clusters after opening them is not allowed. In this project, the online clustering and online unit covering problems are studied in two dimensional Euclidean space. An online algorithm with competitive ratio of 5 is presented for the online unit covering problem. In addition, lowerbounds of 2:5 and 4:66 are established for these problems  

    Adaptive neural fuzzy inference (ANFI) modeling technique for production of marine biosurfactant

    , Article Proceedings of the ASME Design Engineering Technical Conference ; Volume 2, Issue PARTS A AND B , 2012 , Pages 47-52 ; 9780791845011 (ISBN) Abbasi, A. A ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    In this study; a Sugeno type ANFI model which describes the relationship between the bio surfactant concentration as a model output and the critical medium components as its inputs has been constructed. The critical medium components are glucose, urea,SrCl2 and MgSo4 .The experimental data for training and testing capability of the model obtained by a statistical experimental design which have been captured from literatures. Six generalized bell shaped membership function have been selected for each of input variables and based on the training data ANFI model has been trained using the hybrid learning algorithm. The yielded biosurfactant concentration values from the model prediction shows... 

    Utilization of least square support vector machine (LSSVM) for electrical resistivity prediction of the zn-mn-s nanocrystalline semiconductor films

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 3, Issue PARTS A, B, AND C , 2012 , Pages 1099-1104 ; 9780791845196 (ISBN) Abbasi, A. A ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    In this investigation, application of the least square support vector machine (LSSVM) for modeling of the electrical resistivity of the magnetic Zn-Mn-S nanocrystalline semiconductor films has been described. The model has been trained based on the experimental data obtained from a published work by Sreekantha Reddy et al. The model inputs are temperature and variations in the concentrations of Zn, Mn. The results indicate that LSSVM is able to be used for accurate prediction of the electrical resistivity of the Zn-Mn-S nanocrystalline semiconductor films  

    Deformation characterization of mouse oocyte cell using inverse finite element and LevenbergâMarquardt optimization algorithm in needle injection experiment

    , Article Proceedings of the ASME Design Engineering Technical Conference, 12 August 2012 through 12 August 2012 ; Volume 2, Issue PARTS A AND B , August , 2012 , Pages 847-852 ; 9780791845011 (ISBN) Abbasi, A. A ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    In order to better understand the mechanical properties of biological cells, characterization and investigation of their material behavior is necessary. In this paper hyperelastic Neo-Hookean material is used to characterize the mechanicalproperties of mouse oocyte cell. It has been assumed that the cell behavior is continues, isotropic, nonlinear and homogenous material. Then, by matching the experimental data with finite element (FE) simulation result and using the LevenbergâMarquardt optimization algorithm, the nonlinear hyperelastic model parameters have been extracted. Experimental data of mouse oocyte captured from literatures. Advantage of the developed model is that it can be used to... 

    Whole cell mechanical property characterization based on mechanical properties of its cytoplasm and bio membrane

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 9 November 2012 through 15 November 2012 ; Volume 2 , November , 2012 , Pages 545-551 ; 9780791845189 (ISBN) Abbasi, A. A ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    Analysis and investigation of the relation between different parts of biological cells such as biomembrane, cytoplasm and nucleus can help to better understand their behaviors and material properties. In this paper, first, the whole elastic properties of mouse oocyte and embryo cells have been computed by inverse finite element and Levenberg-Marquardt optimization algorithm and second, using the derived mechanical properties and the mechanical properties of its bio membrane from the literature, the mechanical properties of its cytoplasm has been characterized. It has been assumed that the cell behavior is as continues, isotropic, nonlinear and homogenous material for modeling. Matching the... 

    Force controlled manipulation of biological cells using a monolithic MEMS based nano-micro gripper

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 2 , 2012 , Pages 193-201 ; 9780791845189 (ISBN) Abbasi, A. A ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    Nano-micro grippers are able to pick-transport-place the micro or nanometer -sized materials, such as manipulation of biological cells or DNA molecules in a liquid medium. This paper proposes a novel monolithic nano-micro gripper structure with two axis piezoresistive force sensor which its resolution is under nanoNewton. The results of the study have been obtained by the simulation of the proposed gripper structure in Matlab software. Motion of the gripper arm is produced by a voice coil actuator. The behavior of the cell has been derived using the assumptions in the literatures. Moreover, two simple PID controllers, one for control of the gripper motion and another for control of the force... 

    Prediction of reaction force on external indenter in cell injection experiment using support vector machine technique

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 2 , 2012 , Pages 537-543 ; 9780791845189 (ISBN) Abbasi, A. A ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    Evaluation of the reaction force on a tool which is used for exertion of force on biomaterials such as biological cells or soft tissues has applications in virtual reality based medical simulators or haptic tools. In this study, two least square based support vector machine (SVM) models have been constructed to predict the indentation or reaction force on mouse oocyte and embryo cells in cell injection experiment. Inputs of these two models are geometrical parameters of indented cell, namely dimple radius (a), dimple depth (w) and radius of the semicircular curve (R). Experimental data for calibration and prediction of the models have been captured from literatures. The performance of the...