Loading...
Search for: kazmi-sabet--fatemeh
0.136 seconds

    Improved method for increasing accessible pores of MIL-101(Cr) by encapsulation and removal of Phosphotungstic acid (PTA): Pd/PTA-MIL-101(Cr) as an effective catalyst for CO oxidation

    , Article Journal of Cleaner Production ; Volume 347 , 2022 ; 09596526 (ISSN) Abbasi, F ; Karimi Sabet, J ; Abbasi, Z ; Ghotbi, C ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This study forwards a novel and simple approach for encapsulation of Phosphotungstic acid (PTA) into MIL-101(Cr) cavities to develop PTA-MIL-101(Cr) with a high surface area. In this method, the resulting surface area of PTA-MIL-101(Cr) (3563 m2/g) is 1.72 times that of MIL-101(Cr) due to the existence of more accessible pores which are formed by leaching of PTAs incorporated inside MIL-101(Cr) pores during the intense washing. Catalysts are investigated in CO oxidation under atmospheric pressure and feed composition of 1%CO, 20%O2, and 79%He. 3%Pd/PTA-MIL-101(Cr) shows 100%CO conversion at T = 145 °C and outperforms PTA, PTA-MIL-101(Cr), Pd/PTA, 1–3%Pd/MIL-101(Cr), Pd-PTA/MIL-101(Cr), and... 

    The Study of Function of Lipase Biocatalyst Immobilized on Silica Nanoparticles Used for Biodiesel Production

    , M.Sc. Thesis Sharif University of Technology Kalantari, Mohammad (Author) ; Kazemini, Mohammad (Supervisor) ; Arpanaei, Ayyoob (Supervisor) ; Tabandeh, Fatemeh (Co-Advisor)
    Abstract
    Superparamagnetic core/shell nonporous (S1) and core/shell/shell mesoporous (S2 and S3) nanocomposite magnetite/silica particles with a magnetite cluster core of 130±30 nm, a nonporous silica shell of 90±10 nm thickness, and a mesoporous silica shell of 70±15 nm thickness were prepared thorough a simple method. Mesoporous particles were prepared with two BJH pore sizes (2.44 for S2 and 3.76 nm for S3 particles, respectively). The fabricated S1, S2 and S3 particles present high saturation magnetization values of 20, 13 and 17 emu/g, respectively. As a biological application, the lipase from Pseudomonas cepacia was successfully immobilized onto the amino-functionalized nanocomposite particles... 

    Design and Analysis of a Parallel TKR Simulator for Prosthesis Design Evaluation

    , M.Sc. Thesis Sharif University of Technology Daei Nejad, Fatemeh Sadat (Author) ; Farahmand, Farzam (Supervisor) ; Durali, Mohammad (Supervisor)
    Abstract
    In this project a knee prostheses wear testing simulator based on a parallel mechanism for applying forces and torques, is designed. First according to ISO 14243 standard required degrees of freedom and design constraints are determined and also regarding simulator requirements some considerations in design are outlined. Considering all of these parameters, literature has been searched for proper parallel mechanism and because no suitable parallel mechanism, which is a 3 DoF 2T1R paralle mechanism with rotational degree about z axis, has been found; several new designs of proper mechanism have been presented. Scoring different mechanisms according to outcomed parameters from standard and... 

    Study of Antibacterial Performance of Metal Oxide Nanostructures and their Effect on Bacterial Growth Kinetics

    , M.Sc. Thesis Sharif University of Technology Afkhami, Fatemeh Sadat (Author) ; Naseri, Naimeh (Supervisor) ; Zaker Moshfegh, Alireza (Co-Supervisor)
    Abstract
    Fighting contagious microbial diseases is considered a serious health issue, which has attracted much attention in worldwide. Thus, development of new materials based on nanostructures as a new generation of antibiotics to address this challenge has been of interest to researchers in recent years. Nanostructures based on metallic oxide semiconductors such as oxides with light absorption, production of electron-hole pairs in needle like structures cause tearing bacterial membrane and eventually destroy the bacterium. To this end, we designed experiments to study mechanism and physics governing the process of bacterial degradation to determine the best conditions for inhibiting bacteria... 

    Low Voltage Oscillator Design with the Lowest Reported Phase Noise in the 1/F3 Region at 3.6 GHzTitle

    , M.Sc. Thesis Sharif University of Technology Askarzade Torghabe, Reyhaneh (Author) ; Fotowat Ahmady, Ali (Supervisor) ; Akbar, Fatemeh (Supervisor)
    Abstract
    Oscillators are an important building block in the design of synthesizers for RF system applications. State-of-the-art operation defines that an oscillator should have the best spectral purity while consuming a low amount of power. In recent years, several methods have been presented for reducing phase noise separately in the 1/f2 and 1/f3 regions. As CMOS technology advances, the amount of power supplies decreases, which worsens the inherent flicker noise. In this thesis, it has been tried, while investigating the existing methods in the phase noise in this region, it presents the proposed oscillator which is based on a three-coupled transformer. This voltage bias oscillator operates at a... 

    Sleep Apnea Detection Using Wearable Devices

    , M.Sc. Thesis Sharif University of Technology Rahimi, Hamid Reza (Author) ; Fotowat Ahmady, Ali (Supervisor) ; Akbar, Fatemeh (Supervisor)
    Abstract
    Approximately 1.36 billion people worldwide suffer from sleep apnea, necessitating accurate diagnosis and treatment. Traditional sleep clinics rely on Polysomnography (PSG)-based monitoring devices. However, these devices are not only voluminous but also prohibitively expensive, requiring numerous sensors and wires that disrupt sleep and cause discomfort for patients. To address these challenges, we have developed a wireless wearable system. This system comprises three sensor blocks, each capable of capturing vital signs from the body, resulting in a total of eight signals. The first two sensor blocks capture signals from the body, which are subsequently modulated and transmitted to a user's... 

    Clock and Data Recovery based on Phase Shifting and Accordion Oscillator

    , M.Sc. Thesis Sharif University of Technology Fatemi Mofrad, Ali (Author) ; Fotowat Ahmady, Ali (Supervisor) ; Akbar, Fatemeh (Supervisor)
    Abstract
    The continuous growth of network traffic and people's demand for higher data rates, have driven wireline communication systems towards higher data rates. In these systems, the power consumption of these transmitters and receivers is a crucial and influential factor. This paper presents two different solutions to reduce the power consumption and area of these systems. In the first solution, a low-power phase shifter with variable phase and amplitude control is introduced. The changes in these parameters are mutually orthogonal, ensuring that a change in one characteristic does not affect the others. This phase shifter can be used to generate clock pulses with different phases in wireline... 

    Modeling and process design of intraparticle adsorption in single-stage and multistage continuous stirred reactors: An analytical kinetics approach

    , Article Industrial and Engineering Chemistry Research ; Vol. 53, issue. 1 , 2014 , pp. 305-315 ; ISSN: 08885885 Outokesh, M ; Naderi, A ; Khanchi, A. R ; Karimi Sabet, J ; Sharif University of Technology
    2014
    Abstract
    Continuous adsorption in stirred reactors in the form of carbon in pulp (CIP) and resin in pulp (RIP) is an established process for the extraction of gold and uranium. Under the circumstance of intraparticle diffusion resistance, CIP and RIP have been accurately modeled by the Boyd's series (reversible adsorption) and shrinking core model (irreversible adsorption). The present study, in its first part, introduces an analytical formula that most closely approximates both models. Using such formula, the study addresses a basic algorithm for optimization of single-stage continuous adsorption systems through linking of the major process variables. Furthermore, this study is devoted to developing... 

    Control of Size of Graphene Domain Synthesized by Chemical Vapor Deposition

    , M.Sc. Thesis Sharif University of Technology Amini, Negar (Author) ; Ghotbi, Sirus (Supervisor) ; Karimi Sabet, Javad (Supervisor)
    Abstract
    The chemical vapor deposition (CVD) of graphene from methane on a copper substrate is the most promising method for production of large-area graphene films. There have been long-standing challenges in this field such as controlling the graphene coverage, film quality, the number of layers, and the nucleation density of graphene domain. These challenges can be overcome by developing a fundamental understanding of the graphene growth process. The main aim of this study is to control nucleation density of graphene domains. Chemical vapor deposition (CVD) graphene is polycrystalline, and grain boundaries in graphene film have been identified to degrade the properties of graphene as a membrane... 

    Pressure-driven liquid-liquid separation in Y-shaped microfluidic junctions

    , Article Chemical Engineering Journal ; Volume 328 , 2017 , Pages 1075-1086 ; 13858947 (ISSN) Foroozan Jahromi, P ; Karimi Sabet, J ; Amini, Y ; Fadaei, H ; Sharif University of Technology
    2017
    Abstract
    On-chip phase separation of multiphase microflows at the divergence point of Y-shaped microfluidic junctions is an effective way for integrating continuous microstructured devices. In this study, flow pattern maps of various solvent pairs based on the volumetric flow rates of both phases have been drawn experimentally and compared with numerical prediction to investigate the effective domain for which complete phase separation occurred. Furthermore, sufficient separation of aqueous and organic phases at the end of the microchannel was achieved by controlling the pressure difference at the liquid-liquid interface via loading back-pressure on the organic phase. A mathematical model based on... 

    Step-by-step improvement of mixed-matrix nanofiber membrane with functionalized graphene oxide for desalination via air-gap membrane distillation

    , Article Separation and Purification Technology ; Volume 256 , 2021 ; 13835866 (ISSN) Fouladivanda, M ; Karimi Sabet, J ; Abbasi, F ; Moosavian, M. A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    A straightforward three-stage method was applied to fabricate a super-hydrophobic mixed-matrix nanofiber membrane using the electrospinning method for desalination purpose. First, a hydrothermal technique was applied to synthesize a super-hydrophobic nano-sheet, called octadecylamine-reduced graphene oxide (ODA-rGO) with a water contact angle of 162°, which was then added to PVDF-HFP dope solution. After, 0.005 wt% LiCl was added to the dope solution to decrease the mean pore size by increasing solution conductivity. Moreover, some membranes were hot-pressed to improve liquid entry pressure (LEP). Eventually, a top-quality nanofiber membrane was synthesized using 0.1 wt% ODA-rGO and 0.005... 

    Investigation of Performance and Improvement of the Activity of MOF-based Catalysts in CO Oxidation Reaction

    , Ph.D. Dissertation Sharif University of Technology Abbasi, Fatemeh (Author) ; Ghotbi, Cyrus (Supervisor) ; Karimi Sabet, Javad (Supervisor)
    Abstract
    Different catalysts have been proposed for CO oxidation reaction and still many researches are performed to obtain a catalyst with high activity and stability. In this study, MOFs of CuBTC, MIL-101(Cr), and NH2-MIL-101(Cr) and active metal of Pd have been selected and their performances have been investigated in CO oxidation reaction. MOFs have been synthesized by hydrothermal method. Pd loading has been performed by impregnation method in various pH and in aqeous palladium nitrate solution and palladium nitrate solution in nitric acid. To reveal the effect of the nature of noble metal, activity of 1% Pt/MIL has been investigated. Amine-functionalized MIL-101(Cr) has been synthesized by... 

    Sensitivity and Optimal Design for a CCHPW System for Extremely Hot and Humid Area

    , M.Sc. Thesis Sharif University of Technology Sabet, Siavash (Author) ; Shafii, Mohammad Behshad (Supervisor) ; Zabihollah, Abolghasem (Supervisor)
    Abstract
    Considering problems related to energy, including high fuel prices, increasing demand, constraints, and environmental pollution, makes it clear that efficiency is one of the major problems in all over the world. Iran’s southern parts and those countries around Persian Gulf face serious shortage of drinking water. Moreover, on top of the other three types of energy production the need for drinking water is highly sensible. Therefore, the use of CCHPW System is the best solution in these areas. The purpose of this design is to empower the control capability of the combined systems over all factors and apply the necessary changes under different conditions. This endeavor requires a program to... 

    Design and Simulation of Xenon Gas Collection System

    , M.Sc. Thesis Sharif University of Technology Mousavi, Sajad (Author) ; Otukesh, Mohammad (Supervisor) ; Karimi Sabet, Javad ($item.subfieldsMap.e)
    Abstract
    In this thesis, desublimation (deposition) of xenon gas has been studied. Through the past decades, desublimation, became one of the important methods of separation. High purity products and applicability when common methods of separation, as distillation, are not applicable, make desublimation more efficient. Heat transfer phenomenological study of direct phase change of gas to solid (desublimation), evaluation of variation of different parameters during the phase change and finally comparison of experimental results of desublimation and mathematical modeling data are the main considerations in present thesis. Because of low cost and accessibility and heat transfer phenomenological study... 

    An Experimental Study on Liquids Separation by Thermal diffusion Method and it’s Simulation by Computational Fluid Dynamics

    , M.Sc. Thesis Sharif University of Technology Abdinezhad, Fatemeh (Author) ; Uotokesh, Mohammad (Supervisor) ; Karimi Sabet, Javad (Supervisor)
    Abstract
    Thermal penetration is one of the separation methods. In this process, due to the temperature difference, the concentration gradient in one of the gas or liquid phases in the resulting system and the relative separation of the components is possible. The column used for this work is the Classius-Dickel column. This column consists of two vertical plates, one warm and the other cold, spaced a short distance apart. Due to the temperature gradient, the gradient is deliberately created, which creates a concentration gradient in the column, so that the light component accumulates at the top of the column and the heavy component at the bottom of the column. The difference in concentration between... 

    Simulation, Evaluation and Fabrication of a Two-step Microfluidic System to Separate Circulating Tumor Cells

    , M.Sc. Thesis Sharif University of Technology Mir Mohammad Sadeghi, Fatemeh Sadat (Author) ; Vosoughi, Manouchehr (Supervisor) ; Alamzadeh, Iran (Supervisor)
    Abstract
    Cancer is an abnormal growth of cells which is one of the major cause of worldwide’s mortality. Circulating Tumor Cells (CTCs) are rare cancer cells released from the primary or metastatic tumors and transported though the peripheral circulatory system and spreads in body and seize healthy organs. Early detection of CTCs can help in overtaking the cancer, hence isolation of CTCs is an essential step for many therapeutics. In spite of its clinical potential, the isolation and detection of CTCs has been a challenging task due to its rare presence amongst other blood cells (as low as 1–10 CTCs per billions of blood cells), similarity to white blood cell in size and also variability in terms of... 

    Development and Application of Chemometric Methods for Hyperspectral Image Analysis for Authentication and Adulteration Detection in Food (Saffron and Turmeric)

    , Ph.D. Dissertation Sharif University of Technology Hashemi Nasab, Fatemeh Sadat (Author) ; Parastar Shahri, Hadi (Supervisor) ; Abdollahi, Hamid (Supervisor)
    Abstract
    The use of hyperspectral images to detect food fraud has become popular and it is necessary to develop chemometrics methods for analyzing the data from these images. Additionally, food authenticity has become a major challenge, and the focus of this thesis is on developing multivariate methods in chemometrics to extract useful information from data obtained from food authenticity verification using hyperspectral imaging (HSI). This thesis consists of six chapters. In the first chapter, a brief introduction to the fundamentals of hyperspectral imaging and food authenticity verification is presented. In the second chapter, the data structure of these images and chemometric methods including... 

    Synthesis of TiO2 hollow spheres using titanium tetraisopropoxide: Fabrication of high efficiency dye sensitized solar cells with photoanodes of different nanocrystalline TiO2 sub-layers

    , Article RSC Advances ; Vol. 4, issue. 101 , Oct , 2014 , p. 58064-58076 Marandi, M ; Feshki, S ; Naeimi Sani Sabet, M ; Anajafi, Z ; Taghavinia, N ; Sharif University of Technology
    2014
    Abstract
    In this research TiO2 hollow spheres with different diameters were prepared using titanium tetraisopropoxide (TTIP) as the TiO2 precursor. Carbon spheres with average sizes of 230, 325 and 450 nm were prepared as the templates by hydrothermal method. Then TiO2 was deposited on the surface of the carbon spheres through a liquid phase deposition (LPD) process. This two dimensional growth was performed in an appropriate concentration of TTIP and different LPD times. Finally the TiO2 hollow spheres were achieved for specific LPD times by burning the carbon templates. Two kinds of TiO2 nanocrystals with sizes around 20 nm were hydrothermally grown in acidic (pH = 1.5) and basic (pH = 10)... 

    Separation of Metal Ions-based Microfluidic Platform for Liquid-liquid Extraction

    , M.Sc. Thesis Sharif University of Technology Foroozan, Peyman (Author) ; Mohammadi, Ali Asghar (Supervisor) ; Karimi Sabet, Javad (Co-Advisor)
    Abstract
    Continuous separation processes in microfluidic devices experienced a steep rise in attention during the last two decades. Among the different separation processes, liquid-liquid extraction especially benefits from the short molecular diffusion distance and large specific interfacial area, as these are advantageous for effective mass transport. In the present study, glass-based microfluidic devices have been fabricated utilizing laser ablation and wet chemical etching methods then experiments and numerical simulation were carried out to investigate hydrodynamic behavior of fluid flow in Y-junction microfluidic. In order to achieve phase separation at the end of the microchannel, a phase... 

    Experimental and Theoretical Study of Biomass Conversion to Green Fuel by Using Supercritical Fluid

    , M.Sc. Thesis Sharif University of Technology Mohamadzadeh Shirazi, Hamed (Author) ; Ghotbi, Cyrus (Supervisor) ; Karimi Sabet, Javad (Supervisor)
    Abstract
    Nowadays, one of the most basic human problem is how to manage energy resources for sustainable development and how to deal with problems caused by growing energy consumption. Various scenarios are being discussd that the most important of them can be considered research on finding alternative energy sources that are renewable and do not have common pollution. Thus, according to researches carried out until now, using sources such as wind, water, solar biomass, etc. have been proposed. However, due to problems in the development of each of these sources, biomass as the primary option has been introduced. because biomass has several subsidiaries, research shows microalgaes (as a subset) are...