Loading...
Search for: arjmand--m
0.209 seconds

    Superior chemical stability of UiO-66 metal-organic frameworks (MOFs) for selective dye adsorption

    , Article Chemical Engineering Journal ; Volume 399 , 2020 Ahmadijokani, F ; Mohammadkhani, R ; Ahmadipouya, S ; Shokrgozar, A ; Rezakazemi, M ; Molavi, H ; Aminabhavi, T. M ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The presence of dyes as pollutants in wastewater sources from textile industries can cause significant health issues if they are not adequately treated. Dye adsorption to entrap contaminants in nanoparticle pores has created considerable attention in recent years due to the environmental concerns occurring as a result of spillage of dyes in water bodies. In efforts to understand adsorption capability UiO-66, metal-organic frameworks (MOFs) were developed and examined for the separation of four pollutant dyes containing methyl red (MR), methyl orange (MO), malachite green (MG), and methylene blue (MB), which are widely used in textile industries. The adsorbent structural stability in water,... 

    Fe3O4@PAA@UiO-66-NH2 magnetic nanocomposite for selective adsorption of Quercetin

    , Article Chemosphere ; Volume 275 , 2021 ; 00456535 (ISSN) Ahmadijokani, F ; Tajahmadi, S ; Haris, M. H ; Bahi, A ; Rezakazemi, M ; Molavi, H ; Ko, F ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In the present study, a magnetic core-shell metal-organic framework (Fe3O4@PAA@UiO-66-NH2) nanocomposite was synthesized by a facile step-by-step self-assembly technique and used for selective adsorption of the anti-cancer Quercetin (QCT) drug. The synthesized nanocomposite was well characterized using FTIR, XRD, BET, FESEM, and TEM techniques. The adsorption kinetics and isotherms of the magnetic nanocomposites for QCT were investigated in detail at different initial concentrations and temperatures. It was found that the experimental adsorption kinetic and isotherm data were precisely explained by the pseudo-second-order kinetic and Langmuir isotherm models. Moreover, the selective... 

    Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water

    , Article Chemosphere ; Volume 264 , 2021 ; 00456535 (ISSN) Ahmadijokani, F ; Tajahmadi, S ; Bahi, A ; Molavi, H ; Rezakazemi, M ; Ko, F ; Aminabhavi, T. M ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Ethylenediamine-functionalized Zr-based metal-organic framework (MOF, UiO-66-EDA) was prepared via Michael addition reaction to investigate its potential for adsorption of heavy metal ions from water. Specifically, the influence of agitation time, solution pH, the dosage of the adsorbent, initial metal ion concentration, temperature, and coexistence of other metal ions was investigated on the removal efficiency of UiO-66-EDA towards Pb(II), Cd(II), and Cu(II) metal ions. The pseudo-second-order kinetic model governed the adsorption of these ions onto the UiO-66-EDA. Langmuir isotherm model matched the experimental isotherm of adsorption with a maximum adsorption capacity of 243.90, 217.39,... 

    Fe3O4@PAA@UiO-66-NH2 magnetic nanocomposite for selective adsorption of Quercetin

    , Article Chemosphere ; Volume 275 , 2021 ; 00456535 (ISSN) Ahmadijokani, F ; Tajahmadi, S ; Haris, M. H ; Bahi, A ; Rezakazemi, M ; Molavi, H ; Ko, F ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In the present study, a magnetic core-shell metal-organic framework (Fe3O4@PAA@UiO-66-NH2) nanocomposite was synthesized by a facile step-by-step self-assembly technique and used for selective adsorption of the anti-cancer Quercetin (QCT) drug. The synthesized nanocomposite was well characterized using FTIR, XRD, BET, FESEM, and TEM techniques. The adsorption kinetics and isotherms of the magnetic nanocomposites for QCT were investigated in detail at different initial concentrations and temperatures. It was found that the experimental adsorption kinetic and isotherm data were precisely explained by the pseudo-second-order kinetic and Langmuir isotherm models. Moreover, the selective... 

    Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water

    , Article Chemosphere ; Volume 264 , 2021 ; 00456535 (ISSN) Ahmadijokani, F ; Tajahmadi, S ; Bahi, A ; Molavi, H ; Rezakazemi, M ; Ko, F ; Aminabhavi, T. M ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Ethylenediamine-functionalized Zr-based metal-organic framework (MOF, UiO-66-EDA) was prepared via Michael addition reaction to investigate its potential for adsorption of heavy metal ions from water. Specifically, the influence of agitation time, solution pH, the dosage of the adsorbent, initial metal ion concentration, temperature, and coexistence of other metal ions was investigated on the removal efficiency of UiO-66-EDA towards Pb(II), Cd(II), and Cu(II) metal ions. The pseudo-second-order kinetic model governed the adsorption of these ions onto the UiO-66-EDA. Langmuir isotherm model matched the experimental isotherm of adsorption with a maximum adsorption capacity of 243.90, 217.39,... 

    Adsorption performance of UiO-66 towards organic dyes: effect of activation conditions

    , Article Journal of Molecular Liquids ; 2020 Vaghar Mousavi, D ; Ahmadipouya, S ; Shokrgozar, A ; Molavi, H ; Rezakazemi, M ; Ahmadijokani, F ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The Zr-based metal-organic framework (MOF, UiO-66) was synthesized solvothermally. The synthesized UiO-66 was activated using different solvents (acetone, chloroform, and ethanol) via two activation methods of centrifugation and Soxhlet extraction over different periods (1–10 days). The crystalline structure and morphology of the synthesized UiO-66s were characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, and field-emission scanning electron microscopy (FESEM) techniques. The adsorption behaviors of the synthesized UiO-66s were then investigated by selecting anionic methyl red (MR) and cationic methylene blue (MB) as the model dyes. It was found that a change in... 

    Adsorption performance of UiO-66 towards organic dyes: Effect of activation conditions

    , Article Journal of Molecular Liquids ; Volume 321 , 2021 ; 01677322 (ISSN) Vaghar Mousavi, D ; Ahmadipouya, S ; Shokrgozar, A ; Molavi, H ; Rezakazemi, M ; Ahmadijokani, F ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The Zr-based metal-organic framework (MOF, UiO-66) was synthesized solvothermally. The synthesized UiO-66 was activated using different solvents (acetone, chloroform, and ethanol) via two activation methods of centrifugation and Soxhlet extraction over different periods (1–10 days). The crystalline structure and morphology of the synthesized UiO-66s were characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, and field-emission scanning electron microscopy (FESEM) techniques. The adsorption behaviors of the synthesized UiO-66s were then investigated by selecting anionic methyl red (MR) and cationic methylene blue (MB) as the model dyes. It was found that a change in... 

    Enhanced active/barrier corrosion protective properties of epoxy coatings containing eco-friendly green inorganic/organic hybrid pigments based on zinc cations/Ferula Asafoetida leaves

    , Article Journal of Molecular Liquids ; 2020 Haddadi, S. A ; Ghaderi, S ; Sadeghi, M ; Gorji, B ; Ahmadijokani, F ; Ramazani S.A., A ; Mahdavian, M ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, a novel inorganic/organic hybrid pigment based on zinc cations/Ferula Asafoetida leaves extract (Zn-FALE) was synthesized, and its corrosion protection properties were investigated in a saline solution and an organic coating. Interactions of components between Zn2+ cations and FALE were assessed by thermo-gravimetric analysis (TGA) and ultraviolet-visible (UV–visible) spectroscopy. Corrosion inhibitive performance of FALE and Zn-FALE pigments in the solution phase and coating phase was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). TGA and UV–visible results revealed the proper chelation between inorganic and organic components of... 

    Enhanced active/barrier corrosion protective properties of epoxy coatings containing eco-friendly green inorganic/organic hybrid pigments based on zinc cations/Ferula Asafoetida leaves

    , Article Journal of Molecular Liquids ; Volume 323 , 2021 ; 01677322 (ISSN) Haddadi, S. A ; Ghaderi, S ; Sadeghi, M ; Gorji, B ; Ahmadijokani, F ; Ramazani Saadatabadi, A ; Mahdavian, M ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this study, a novel inorganic/organic hybrid pigment based on zinc cations/Ferula Asafoetida leaves extract (Zn-FALE) was synthesized, and its corrosion protection properties were investigated in a saline solution and an organic coating. Interactions of components between Zn2+ cations and FALE were assessed by thermo-gravimetric analysis (TGA) and ultraviolet-visible (UV–visible) spectroscopy. Corrosion inhibitive performance of FALE and Zn-FALE pigments in the solution phase and coating phase was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). TGA and UV–visible results revealed the proper chelation between inorganic and organic components of... 

    Magnetic Fe3O4@UiO-66 nanocomposite for rapid adsorption of organic dyes from aqueous solution

    , Article Journal of Molecular Liquids ; Volume 322 , 2021 ; 01677322 (ISSN) Ahmadipouya, S ; Heidarian Haris, M ; Ahmadijokani, F ; Jarahiyan, A ; Molavi, H ; Matloubi Moghaddam, F ; Rezakazemi, M ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Human society is becoming more intransigent on removing organic dyes from polluted water before discharging to the environment. To fulfill this goal, a magnetic metal-organic framework adsorbent based on functionalized magnetic Fe3O4 nanoparticles and highly water stable UiO-66 with high porosity and sensitivity to the external magnetic field was designed and synthesized via an easy step-by-step self-assembly technique. The synthesized adsorbent magnetic nanoparticles (Fe3O4@UiO-66) were applied to remove organic dyes, i.e., methyl orange (MO) and methylene blue (MB), from a contaminated aqueous solution. The experiments displayed that magnetic Fe3O4@UiO-66 has good adsorption uptake for MO... 

    Magnetic Fe3O4@UiO-66 nanocomposite for rapid adsorption of organic dyes from aqueous solution

    , Article Journal of Molecular Liquids ; Volume 322 , 2021 ; 01677322 (ISSN) Ahmadipouya, S ; Heidarian Haris, M ; Ahmadijokani, F ; Jarahiyan, A ; Molavi, H ; Matloubi Moghaddam, F ; Rezakazemi, M ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Human society is becoming more intransigent on removing organic dyes from polluted water before discharging to the environment. To fulfill this goal, a magnetic metal-organic framework adsorbent based on functionalized magnetic Fe3O4 nanoparticles and highly water stable UiO-66 with high porosity and sensitivity to the external magnetic field was designed and synthesized via an easy step-by-step self-assembly technique. The synthesized adsorbent magnetic nanoparticles (Fe3O4@UiO-66) were applied to remove organic dyes, i.e., methyl orange (MO) and methylene blue (MB), from a contaminated aqueous solution. The experiments displayed that magnetic Fe3O4@UiO-66 has good adsorption uptake for MO... 

    Nonlinear Analysis of Dynamic Spine Stability in Healthy and Low Back Pain Patients During Repetitive Flexion Extension Tasks

    , M.Sc. Thesis Sharif University of Technology Moeini Sedeh, Samaneh (Author) ; Arjmand, Navid (Supervisor)
    Abstract
    Objective: Stability is important to prevent falls during occupational and daily living activities. Control parameters such as speed, direction of motion and external load can affect stability pattern. The purpose of this study was to evaluate the effect of the mentioned control parameters on stability control pattern.
    Methods: Kinematic data (rotation angles) to 19 healthy volunteers and 19 patients with low back pain associated with repeated trunk bending motion in eight different conditions of speed (high and slow), direction (symmetric and asymmetric planes) and external load (with and without load), was evaluated. Since the volunteers do during dynamic movements, they must also be... 

    A Comparative Study between Available Lifting Tools for Assessment of Risk of Back Injuries

    , M.Sc. Thesis Sharif University of Technology Rajaee, Mohamad Ali (Author) ; Arjmand, Navid (Supervisor)
    Abstract
    Epidemiological studies have identified manual material handling and lifting as risk factors in occupational low back pain (LBP). There are many lifting analysis tools to estimate the risk of injury during a specific lifting task. One for using these tools, needs to know the limitations of each tool and be noticed where a tool cannot be used. The purpose of this study is to compare different biomechanical models of lumbar spine and find out their characteristics.Five models are chosen for this study which are: the University of Michigan’s Static Strength Prediction Program ( ) software, the revised Hand-Calculation Back Compressive Force (HCBCF) equation, the simple polynomial equation of... 

    Evaluating the NIOSH Equation Performance to Estimate the Risk of Injury to Spine in Asymmetric Lifting

    , M.Sc. Thesis Sharif University of Technology Behjati Ashtiani, Mohammad (Author) ; Arjmand, Navid (Supervisor)
    Abstract
    The 1991 NIOSH Lifting Equation (NLE) is widely used to assess the risk of injury to the spine by providing estimates of the recommended weight limit (RWL) in hands. The present study uses the AnyBody modeling software to verify whether the RWL generates L5-S1 within the limits (e.g., 3400 N for compression recommended by NIOSH and 1000 N for shear recommended in the literature). Twenty-four symmetric and asymmetric lifting activities were simulated to evaluate the RWL by the NLE and the L5-S1 loads by AnyBody. In two activities, involving large trunk flexion and 30 and 60 degrees of load asymmetry, the estimated RWL generated L5-S1 spine loads exceeding the recommended limits. The NIOSH... 

    Estimation of Lumbar Spine Load sharing using a Detailed Finite Element Model Driven by X-Ray Kinematics

    , M.Sc. Thesis Sharif University of Technology Dehghan Hamani, Iraj (Author) ; Arjmand, Navid (Supervisor)
    Abstract
    Spinal diseases are prevalent and costly. Excessive mechanical loads on the spine play a crucial role in the etiology of back disorders. To estimate spinal loads one needs to calculate unknown muscle forces through either an optimization or EMG-driven approach. Both approaches involve several assumptions and simplifications regarding anatomy of muscles,mechanical properties of the spinal tissues, and estimation of the muscle forces. An alternative approach is to estimate spinal loads through effect of muscle forces, i.e., kinematics generated by muscles rather than forces generated by muscles. The present study hence aims to estimate spinal loads using a detailed finite element (FE) model of... 

    Design and Manufacturing of a Patient-specific Drill Guide Template for Thoracic Pedicle Screw Placement

    , M.Sc. Thesis Sharif University of Technology Mohammadi Moghaddam, Shima (Author) ; Arjmand, Navid (Supervisor)
    Abstract
    Spinal instrumentation with pedicle screws has become a widespread surgical procedure in the treatment of spinal disease. The traditional way of placing pedicle screws is to use the anatomical landmarks which at many times can be a best guess resulting in breaches of the pedicle and causing neurological injuries. Additional modalities used include the intra-operative fluoroscopy or navigation systems, which results in radiation exposure and more intra-operative time. In order to solve the technical problems, a pedicle screw navigation template that guarantees the correct implantation position and direction of vertebral pedicle screws, can be used. Compared to pedicles in the lumbar spine,... 

    In Vivo-Based Artificial Neural Networks to Predict 3d Human Body Posture and Lumbosacral Joint Moment During Lifting Activities

    , M.Sc. Thesis Sharif University of Technology Aghazadeh Shabestari, Farzad (Author) ; Arjmand, Navid (Supervisor)
    Abstract
    Manual material handling (MMH) is associated with mechanical back injuries. To manage such injuries, musculoskeletal models are employed to estimate spinal loads during MMH. These models require, as input, 3D-position of the hand-load and body posture whose measurements involve skillful and time-consuming motion analysis investigations.In order to facilitate the procedure of posture measurements and load estimations, three coupled artificial-neural-networks (ANNs) were developed. To predict whole body posture, ANN1 was trained based on our novel measurements on 15 individuals. Each individual performed several static-tasks by holding 0, 5, and 10 kg weight at 9 different anterior-left... 

    Homogenization of Hamilton - Jacobi Equations

    , M.Sc. Thesis Sharif University of Technology Sadeghi Arjmand, Saeed (Author) ; Fotouhi, Morteza (Supervisor)
    Abstract
    The aim of homogenization theory is to establish the macroscopic behaviour of a system which is ‘microscopically’ heterogeneous, in order to describe some characteristics of the heterogeneous medium (for instance, its thermal or electrical conductivity). This means that the heterogeneous material is replaced by a homogeneous fictitious one (the ‘homogenized’ material), whose global (or overall) characteristics are a good approximation of the initial ones. From the mathematical point of view, this signifies mainly that the solutions of a boundary value problem, depending on a small parameter, converge to the solution of a limit boundary value problem which is explicitly described. In... 

    Mechanical characterization of the ligaments in subject-specific models of the patellofemoral joint using in vivo laxity tests

    , Article Knee ; Volume 26, Issue 6 , 2019 , Pages 1220-1233 ; 09680160 (ISSN) Akbar, M ; Farahmand, F ; Arjmand, N ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Background: The purpose of this study was to propose a methodology for mechanical characterization of the ligaments in subject-specific models of the patellofemoral joint (PFJ) of living individuals. Method: PFJ laxity tests were performed on a healthy volunteer using a specially designed loading apparatus under biplane fluoroscopy. A three-dimensional (3D) parametric model of the PFJ was developed in the framework of the rigid body spring model using the geometrical data acquired from the subject's computed tomography and magnetic resonance images. The stiffness and pre-strains of the medial and lateral PFJ ligaments were characterized using a two-step optimization procedure which minimized... 

    3D Spinal Kinematics During Load-Handling Activities, Range of Motions and Movement Coordination in Normal and Obese Individuals

    , M.Sc. Thesis Sharif University of Technology Ghasemi Varnamkhasti, Morteza (Author) ; Arjmand, Navid (Supervisor)
    Abstract
    Today, obesity, as a major global health challenge, affects more than 30 percent of the world's population. To investigate the effect of obesity on spinal function, a common method is motion analysis (kinematic method). This method is based on the claim that the abnormal mechanical function of the spine is directly related to its abnormal motions.The aim of this study is to measure and compare the range of motions (RoMs) of different segments of the spine in all anatomical plates between obese and normal individuals, as well as to calculate and compare some motion rhythms between the lumbar spine and the pelvis in these two groups. Comparing the posture of the spine between obese and normal...