Loading...
Search for: kazmi-sabet--fatemeh
0.116 seconds

    Metallurgical and mechanical properties of underwater friction stir welds of Al7075 aluminum alloy

    , Article Journal of Materials Processing Technology ; Volume 262 , 2018 , Pages 239-256 ; 09240136 (ISSN) Rouzbehani, R ; Kokabi, A. H ; Sabet, H ; Paidar, M ; Ojo, O. O ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Travel speeds between 25–300 mm/min and tool rotational speeds of 800 and 1250 rpm were employed for this study. The microstructure, mechanical properties and fracture surfaces of the joints were studied. Underwater environment and an increase in travel speed significantly increase the precipitates’ volume fraction, reduce the average grain and precipitate sizes of the weld nugget zones. A critical travel speed of 150 mm/min is attained in underwater welds beyond which the average grain sizes remain relatively the same. Average grain and precipitate sizes have linear relationships with the tool rotational and travel speed ratio. Optimum weld strengths of 396 and 360 MPa were obtained in the... 

    Preparation of High Purity BF3 Gas and Feasibility Study on Separation of Boron Isotopes by its Injection into a Gas Centrifuge

    , M.Sc. Thesis Sharif University of Technology Hashemi Baragoori, Keyvan (Author) ; Outokesh, Mohammad (Supervisor) ; Karimi-Sabet, Javad (Supervisor)
    Abstract
    Natural Boron consists of two stable isotopes, 10B (19.3%) and 11B (80.7%). 10B isotope has a large thermal neutron absorption and therefore, use widely in such aspects as modern industry, atomic energy industry (as control rods, chemical shim and etc.), Medical science and applications in disclosing neutrons to measure neutron reactors fluxes. Boron trifluoride is most importantly used as a reagent in organic synthesis, typically as a Lewis acid. In this study, we designed and built the related setup for preparation of high purity BF3 gas. And then we tried to optimize the efficiency with process design tools such as response surface methodology (RSM). At the end of this study, we were able... 

    The Experimental Study of Adsorption and Separation of Hydrogen Gas Using Metal-organic Frameworks

    , M.Sc. Thesis Sharif University of Technology Hashemi, Mohammad Mahdi (Author) ; Ghotbi, Cyrus (Supervisor) ; Karimi Sabet, Javad (Supervisor)
    Abstract
    Hydrogen gas is considered as a clean fuel and energy carrier that its storage for future uses is a challenging issue. One of the methods to store it, is adsorption on a group of adsorbents called metal-organic frameworks. In this research, one of these frameworks called ZIF-8, has been selected to study hydrogen storage capability. To evaluate the effect of having two metals, a mixture of two metals was used in the synthesis process. To characterize the structure of the synthesized adsorbents, X-ray powder diffraction (XRD),adsorption and desorption of nitrogen at temperature of 77 K, Field Emission Scanning Electron Microscopy (FESEM), energy-dispersive X-ray Spectroscopy (EDS) and... 

    Construction of a New Membrane Bioreactor for Industrial Wastewater Treatment

    , M.Sc. Thesis Sharif University of Technology Anvari, Arezoo (Author) ; Seifkordi, Ali Akbar (Supervisor) ; Hemati, Mohmoud (Co-Advisor) ; Rekabdar, Fatemeh (Co-Advisor)
    Abstract
    In recent years membrane bioreactors (MBR) were widely used as an advanced process for industrial wastewater treatment. But fouling issue causes some restrictions in these systems. So for fouling reduction many researches were done.In this study for fouling improvement, blending of hydrophilic polymer (PAN) with main polymer PVDF was used. Blending membrane in phase inversion process with DMAC as solvent and water as non-solvent was made. For pore-forming in membranes, PVP as hydrophilic additive with three different composition was added and then for more enhancement of antifouling property of membrane, TiO2 nanoparticles with four different composition were added to polymeric... 

    H2S sensing properties of added copper oxide in WO3

    , Article Key Engineering Materials ; Volume 543 , March , 2013 , Pages 145-149 Nowrouzi, R. (Rasoul) ; Razi Astaraei, F. (Fatemeh) ; Kashani, Sh. (shima) ; Iraji Zad, A. (Azam) ; Sharif University of Technology
    2013
    Abstract
    We study Hydrogen sulfide gas detection properties of pure and 1% copper oxide added WO3 thin films. The spin coated deposits on alumina substrates were annealed at 500 C for 1 hour in order to improve the crystallinity of the films. The sensitivity of pure tungsten oxide is poor even at temperatures of about 100 C but the doped samples exhibit good response to H2S gas. Our data show sensitivity of about 1500 in 10 ppm diluted gas in air at 100 C. The films are sensitive to the gas even at 250 ppb (sensitivity about 2) H2S concentration at 100 C but with rather long recovery time. Crystal structure, morphology and chemical composition of samples were studied by X-Ray diffraction (XRD),... 

    Solvation free energy and solubility of acetaminophen and ibuprofen in supercritical carbon dioxide: Impact of the solvent model

    , Article Journal of Supercritical Fluids ; Volume 109 , 2016 , Pages 166-176 ; 08968446 (ISSN) Noroozi, J ; Ghotbi, C ; Jahanbin Sardroodi, J ; Karimi Sabet, J ; Robert, M. A ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Classical molecular dynamics simulations are used to compute the solvation free energy of two pharmaceutical solids, namely ibuprofen and acetaminophen in carbon dioxide (CO2), over the density range of interest in supercritical processes. In order to examine the influence of the solvent model on the resulting free energies, three popular CO2 models (Zhang, EPM2, and TraPPE) are studied. Relatively large discrepancies for the solvation free energy exist between these CO2 models, suggesting that the former is sensitive to the different balances between dispersive and electrostatic forces used in these models. In particular, for the solvation of the highly polar (dipole moment of ∼5.2 Debye)... 

    Experimental Study and Optimization of Calcium Ion Extraction Using Emulsion Liquid Membrane with Isotope Separation Perspective

    , Ph.D. Dissertation Sharif University of Technology Abdollahzadeh Khanghah, Fariba (Author) ; Ghotbi, Cyrus (Supervisor) ; Karimi Sabet, Javad (Supervisor)
    Abstract
    The aim of this dissertation is to investigate the extraction of calcium ions using an emulsion liquid membrane (ELM) with an isotopic perspective. Considering the importance of ion extraction as a preliminary step to isotope separation, the factors affecting the extraction of Ca(II) ions in the ELM process were investigated and optimization of the process was performed in this study. Dicyclohexano-18-crown-6 (DC18C6) was used as the carrier due to isotopic considerations. However, its extractability for calcium ions is limited. In order to address this issue, it is possible to introduce an organic acid, specifically di-(2-ethylhexyl) phosphoric acid (D2EHPA), into the membrane phase. This... 

    Production of Uranium Dioxide Nano Powder With Hydrothermal Method in Supercritical Water Reactor

    , M.Sc. Thesis Sharif University of Technology Golzary, Abooali (Author) ; Outokesh, Mohammad (Supervisor) ; Ahmadi, Javad (Supervisor) ; Karimi Sabet, Javad (Co-Advisor)
    Abstract
    Hydrothermal supercritical method is one of the most suitable methods for metal oxide nano powder, ceramics and mineral catalyst synthesis. Metal oxides nanopowder in its pure or mixed form has wide potential application as chemical industrial catalyst, hot Superconductors, magnetic material, gas sensors and car catalyst convertors. One of the most important metal oxides aspects of application is uranium oxide as nuclear reactor fuel is used. In addition, UO2 is selective catalyst for converting methane to methanol process and Decomposition of organic Chlorine material. In Supercritical hydrothermal method done in high pressure reactor with critical to fluid, is new method for the... 

    Synthesis of Graphene Oxide and Graphene Oxide Membrane for Separation of Gas Mixtures

    , M.Sc. Thesis Sharif University of Technology Abbasi, Fateme (Author) ; Ghotbi, Sirus (Supervisor) ; Karimi Sabet, Javad (Supervisor) ; Mousavi, Abbas (Co-Advisor)
    Abstract
    Thin film graphene oxide(GO) membranes have been promising potential for gas purification due to thin lamellar microstructure, stable a few atom thick layers and very short intersheet distances. In this research, the nanoporous graphene oxide membranes have been prepared by vacuum and pressurized ultrafiltration on the modified polyacrylonitryle(mPAN) sublayer for helium separation from Nitrogen and carbon dioxide gas mixture. The separation performance of synthesized GO membrane was controlled by varying parameters such as concentration of stabilized aqueous GO solution, pores size range of support and its surface properties, centrifuge time, applied pressure after synthesis, humidity,... 

    Michael Addition of Anthrone to Nitroolefines in Water and Oxidation of Alkenes Using a Supported Iron Oxide Nanocatalyst

    , M.Sc. Thesis Sharif University of Technology Karimi, Nafiseh (Author) ; Saeedi, Mohammad Reza (Supervisor) ; Ziyaei Halimehjani, Azim (Supervisor) ; Rajabi, Fatemeh (Co-Advisor)
    Abstract
    This projct includes the following sections: In the first section, Michael addition reaction of anthrone to nitroolefins is described in water without using any catalyst to prepare 9-(2-nitro-1-arylethyl)anthracene-10(9H)-ones. This method is green, efficient and gives high yields of products. The solvent effect is also investigated. In the second section, Considerable efforts have been directed in recent years towards the transition metal complex catalyzed oxidation of organic compounds such as olefins, sulfides, benzylics alcohols and phenolics. And due to the various advantages of supported heterogeneous catalysts and in our aim to develop a simple, more efficient and eco-friendly... 

    prediction of Polymeric Membrane Morphology Based on Phase Diagrams for MBR Applications

    , M.Sc. Thesis Sharif University of Technology Mohsenpour, Sajjad (Author) ; Sayf Kordi, Ali Akbar (Supervisor) ; Hemmati, Mahmoud (Supervisor) ; Rekabdar, Fatemeh (Co-Advisor)
    Abstract
    In this research, we have tried to predict the morphology of the membranes that were prepared by phase inversion method. In this research Polyvinylinedifluoride (PVDF) and dimethylacetamide (DMAc) was used as the polymer and solvent. The affect of titanium oxide (TiO2 ) and polyvinylpyrolidene (PVP) which are respectively an inorganic and an organic additive, on the morphology of the membranes was investigated. Ternary and Quadratic phase diagrams were drawn based on the Flory Huggins theory. The interaction between components was determined and the effect of interactions and molar volumes of polymer, solvent, non-solvent and additives on the binodal line was investigated. To predict... 

    Preparation and characterization of raloxifene nanoparticles using Rapid Expansion of Supercritical Solution (RESS)

    , Article Journal of Supercritical Fluids ; Volume 63 , 2012 , Pages 169-179 ; 08968446 (ISSN) Keshavarz, A ; Karimi Sabet, J ; Fattahi, A ; Golzary, A ; Rafiee Tehrani, M ; Dorkoosh, F. A ; Sharif University of Technology
    2012
    Abstract
    One of the key factors in drug's efficacy is the value of their bioavailability that increases by the reduction of particle size through improvement of dissolution rate. In this study, raloxifene particle size was reduced by Rapid Expansion of Supercritical Solution (RESS). The effect of extraction temperature (40-80 °C), extraction pressure (10-18 MPa) and spray distance (5-10 cm) were investigated on size and particle size distribution of the nanoparticles. Particles were characterized using X-ray diffraction (XRD), Fourier Transform Infrared Analysis (FTIR), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS). The average size of... 

    Experimental and simulation investigation on separation of binary hydrocarbon mixture by thermogravitational column

    , Article Journal of Molecular Liquids ; Volume 268 , 2018 , Pages 791-806 ; 01677322 (ISSN) Hashemipour, N ; Karimi Sabet, J ; Motahari, K ; Mahruz Monfared, S ; Amini, Y ; Moosavian, M. A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this article, experimental and numerical investigations are performed to study a thermogravitational column (TGC) for the separation of toluene/n-heptane mixture. This research has tried to determine the main significant parameters and their effects on the performance of the process. In experimental examinations, the influence of the main parameters such as feed flow rate, cut and temperature gradient on the performance of the TGC efficiency is studied. In addition, computational fluid dynamics is used to simulate the separation process in this review. The response surface methodology (RSM) was also applied to minimize the number of runs and investigate the optimum operating conditions.... 

    Detailed Kinetic Study of Acid Leaching of Uranium ore and Derivation of a Scalable Mathematical Model for it

    , M.Sc. Thesis Sharif University of Technology Rahimi, Morteza (Author) ; Otukesh, Mohammad (Supervisor) ; Karimi Sabet, Jadad (Supervisor) ; Ghodsinejad, Davood (Co-Supervisor)
    Abstract
    The leaching process is the first stage in the process of extracting uranium out of the ore. The leaching, based on the used material is divided into two main methods of acidic and alkali leaching. Each of these two techniques have their own pros and cones. It is notable that due to lower costs, and faster kinetics, the acid leaching is the first option of the mines unless the percentage of carbonates (and the other acid-soluble materials) in the ore are too high that makes this process uneconomical because of higher acid consumption. The kinetics of the acid leaching of the uranium depends on various parameters such as acid concentration, the particle size, exposure time and the temperature... 

    Numerical study of n-heptane/benzene separation by thermal diffusion column

    , Article Chinese Journal of Chemical Engineering ; Volume 27, Issue 8 , 2019 , Pages 1745-1755 ; 10049541 (ISSN) Hashemipour, N ; Karimi Sabet, J ; Motahari, K ; Mahruz Monfared, S ; Amini, Y ; Moosavian, M. A ; Sharif University of Technology
    Chemical Industry Press  2019
    Abstract
    In this article, numerical simulations are performed to investigate the performance of the thermal diffusion column for the separation of n-heptane/benzene mixture. The present work tried to optimize column by analyzing significant parameters such as feed flow rate, temperature and cut. In order to obtain the hydrodynamic and temperature and mass distribution inside thermal diffusion column, computational fluid dynamic (CFD) method is applied to solve the Navier–Stocks equations. Numerical simulations are conducted to study the main parameters in both stationary and time-dependent conditions. By using the separation work unit as a function of cut, the optimal cut for maximum SWU occurs... 

    Theoretical and Experimental Study of Essential oil Extraction from Damask Rose Flower

    , M.Sc. Thesis Sharif University of Technology Darvishi Noshabadi, Mohammad Amin (Author) ; Gothbi, Cyrus (Supervisor) ; Karimi Sabet, Javad (Supervisor)
    Abstract
    The use of medicinal plants to improve living standards has coincided with the history of human life. Throughout history, man has had no choice but to resort to plants. Among all the plants, Iranians have had a deep connection with Mohammadi flowers and throughout history have tried to extract the plant in various ways. Therefore, in this article, we have examined the method of supercritical extraction. In order to create a criterion for comparing the maximum extraction rate with the Soxhlet method and with the help of normal hexane solvent, the extraction operation was performed and its efficiency was estimated to be equal to 1.02%. Then, with supercritical experiments, it was found that... 

    Standard SPECT myocardial perfusion estimation from half-time acquisitions using deep convolutional residual neural networks

    , Article Journal of Nuclear Cardiology ; 2020 Shiri, I ; AmirMozafari Sabet, K ; Arabi, H ; Pourkeshavarz, M ; Teimourian, B ; Ay, M. R ; Zaidi, H ; Sharif University of Technology
    Springer  2020
    Abstract
    Introduction: The purpose of this work was to assess the feasibility of acquisition time reduction in MPI-SPECT imaging using deep leering techniques through two main approaches, namely reduction of the acquisition time per projection and reduction of the number of angular projections. Methods: SPECT imaging was performed using a fixed 90° angle dedicated dual-head cardiac SPECT camera. This study included a prospective cohort of 363 patients with various clinical indications (normal, ischemia, and infarct) referred for MPI-SPECT. For each patient, 32 projections for 20 seconds per projection were acquired using a step and shoot protocol from the right anterior oblique to the left posterior... 

    Standard SPECT myocardial perfusion estimation from half-time acquisitions using deep convolutional residual neural networks

    , Article Journal of Nuclear Cardiology ; Volume 28, Issue 6 , 2021 , Pages 2761-2779 ; 10713581 (ISSN) Shiri, I ; AmirMozafari Sabet, K ; Arabi, H ; Pourkeshavarz, M ; Teimourian, B ; Ay, M. R ; Zaidi, H ; Sharif University of Technology
    Springer  2021
    Abstract
    Introduction: The purpose of this work was to assess the feasibility of acquisition time reduction in MPI-SPECT imaging using deep leering techniques through two main approaches, namely reduction of the acquisition time per projection and reduction of the number of angular projections. Methods: SPECT imaging was performed using a fixed 90° angle dedicated dual-head cardiac SPECT camera. This study included a prospective cohort of 363 patients with various clinical indications (normal, ischemia, and infarct) referred for MPI-SPECT. For each patient, 32 projections for 20 seconds per projection were acquired using a step and shoot protocol from the right anterior oblique to the left posterior... 

    Comparative study on the microstructures and properties of wire+arc additively manufactured 5356 aluminium alloy with argon and nitrogen as the shielding gas

    , Article Additive Manufacturing ; Volume 34 , August , 2020 Li, S ; Zhang, L. J ; Ning, J ; Wang, X ; Zhang, G. F ; Zhang, J. X ; Na, S. J ; Fatemeh, B ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    This research explored the influences of shielding gases on the appearance of weld beads and the microstructures and mechanical properties of thin-wall samples using conventional gas metal arc welding as the heat source by using 5356 aluminium alloy welding wire as the raw materials and nitrogen (N2) and argon (Ar) as the shielding gases. The results showed that under the same parameters and after mono-layer single-bead welding was performed using N2 as the shielding gas, the bead height was higher, the bead width was narrower, and the penetration depth was shallower. The grain size of the thin-wall sample protected by N2 was 43.5–47.8 % smaller than that obtained under Ar protection.... 

    Analyzing Dermatological Data for Disease Detection Using Interpretable Deep Learning

    , M.Sc. Thesis Sharif University of Technology Hashemi Golpaygani, Fatemeh Sadat (Author) ; Rabiee, Hamid Reza (Supervisor) ; Sharifi Zarchi, Ali (Supervisor) ; Ghandi, Narges (Co-Supervisor)
    Abstract
    We present a deep neural network to classify dermatological disease from patient images. Using self-supervised learning method we have utilized large amount of unlabeled data. We have pre-trained our model on 27000 dermoscopic images gathered from razi hospital, the best dermatological hospital in Iran, along with 33000 images from ISIC 2020 dataset. We have evaluated our model performance in semi-supervised and transfer learning approaches. Our experiments show that using this approach can improve model accuracy and PRC up to 20 percent on semi-supervised setting. The results also show that pretraining can improve classification PRC up to 20 percent on transfer learning task on HAM10000...