Loading...
Search for: naseri--amene
0.104 seconds

    Toward reservoir oil viscosity correlation

    , Article Chemical Engineering Science ; Volume 90 , 2013 , Pages 53-68 ; 00092509 (ISSN) Hemmati Sarapardeh, A ; Khishvand, M ; Naseri, A ; Mohammadi, A. H ; Sharif University of Technology
    2013
    Abstract
    Oil viscosity plays a key role in reservoir simulation and production forecasting, as well as planning thermal enhanced oil recovery methods and these make its accurate determination necessary. In this communication, the most frequently used oil viscosity correlations are evaluated using a large databank of Iranian oil reservoirs which were measured using a Rolling Ball viscometer (Ruska, series 1602). To evaluate the performance and accuracy of these correlations, statistical and graphical error analyses have been used simultaneously. Three of the most accurate correlations for each region, including dead oil viscosity, viscosity below bubble point, viscosity at bubble point and the... 

    Development of a New Simulation Tool to Study the Asphaltene Precipitation and Deposition in Oil Well Column Based on Particle Scaling

    , M.Sc. Thesis Sharif University of Technology Naseri Boroujeni, Saman (Author) ; Jamshidi, Saied (Supervisor) ; Taghikhani, Vahid (Supervisor)
    Abstract
    Formation, precipitation and deposition of heavy organic compounds of petroleum fluids including, but not limited to, asphaltene in oil reservoirs and production systems have been by far the most important and challenging flow assurance problems. Therefore, preventative actions to control organic deposits in oil formations and production systems which can lead inevitably to reduction or cessation in production, have always been a main challenge for oil producers.In this thesis, a one dimensional simulator have been developed to study asphaltene precipitation, aggregation and deposition in an oil well column at isothermal and non-isothermal conditions. While the previously proposed PC-SAFT... 

    Synthesis and Performance Evaluation of FeOOH Elechtrocatalyst Supported on Nickel Foam for Oxygen Evolution Reaction

    , M.Sc. Thesis Sharif University of Technology Nick Maleki, Ali (Author) ; Moshfegh, Alireza (Supervisor) ; Naseri, Naimeh (Co-Supervisor)
    Abstract
    Due to imminent shortage of fossil fuels, environmental issues that occur from their intensive use, population growth and industrialization of societies moving towards renewable energy sources is inevitable. Sun is the most clean and abundant source of energy but it is needed to be accompanied with an energy storage system as it is intermittent and cannot supply our required energies on demand. Water splitting electrochemical cells are promising solutions to cope with this problem by producing hydrogen as a clean fuel. The overpotential imposed by anode is the bottleneck of the water splitting reaction. The anodes with sufficient efficiency that are used today are made from precious and... 

    The effect of silver oxidation on the photocatalytic activity of Ag/ZnO hybrid plasmonic/metal-oxide nanostructures under visible light and in the dark

    , Article Scientific Reports ; Volume 9, Issue 1 , 2019 ; 20452322 (ISSN) Ziashahabi, A ; Prato, M ; Dang, Z ; Poursalehi, R ; Naseri, N ; Sharif University of Technology
    Nature Publishing Group  2019
    Abstract
    A new synergetic hybrid Ag/ZnO nanostructure was fabricated which is able to cause photocatalytic degradation (in high yields) of methylene blue under visible light as well as in the dark. In this nanostructure, ZnO was synthesized using the arc discharge method in water and was coupled with Ag via a chemical reduction method. X-ray photoelectron spectroscopy (XPS) and photoluminescence spectroscopy results confirmed the existence of defects in ZnO in the hybrid nanostructures; these defects act as electron traps and inhibit the recombination of electron-hole pairs. The absorption edge of the hybrid nanostructure shifts toward the visible region of the spectrum due to a combination of the Ag... 

    Synthesis of NiAl-TiC composites from elemental powders by volume combustion method

    , Article Materials Science and Technology (United Kingdom) ; Volume 35, Issue 7 , 2019 , Pages 831-838 ; 02670836 (ISSN) Saadati, A ; Minagar, A ; Naseri, G ; Bahmani, A ; Malekan, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    NiAl-TiC composites were synthesised by volume combustion (VC) method from elemental powders to improve the mechanical properties and high temperature performance of nickel aluminide. Synthesised specimens with porous nature were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analysis. XRD results showed that NiAl was dominant phase and other phases like Al 3 Ni 2 (in NiAl + 5 wt-% TiC, NiAl + 10 wt-% TiC specimens) and AlNi 3 (in equimolar NiAl-TiC) were present in specimens. Synthesised specimens of NiAl, NiAl + 5 wt-% TiC, NiAl + 10 wt-% TiC, NiAl + 15 wt-% TiC and equimolar NiAl-TiC achieved Vickers... 

    Silver nanowires immobilized on gold-modified glassy carbon electrode for electrochemical quantification of atorvastatin

    , Article Journal of Electroanalytical Chemistry ; Volume 876 , November , 2020 Naseri, A ; Hormozi Nezhad, M. R ; Shahrokhian, S ; Asadian, E ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Development of simple yet precise sensing platforms for rapid determination of biological species and drugs is of paramount importance, not only for analysis of pharmaceutical formulations during the production stage, but also in clinical practices and medical diagnosis. In the present research, we report on the electrochemical determination of atorvastatin (ATOR) by using silver nanowires/gold-modified glassy carbon electrode (Ag NWs/Au/GCE). The modified electrode was constructed through a two-step procedure in which narrow silver nanowires synthesized via a polyol method are drop casted on a pre-modified GCE with electrodeposited gold particles. The results of XRD analysis indicated the... 

    Flexibility-oriented Resource Management in Active Distribution Systems in Ramp Market

    , M.Sc. Thesis Sharif University of Technology Naseri Sorkheh, Amin (Author) ; Abbaspour Tehrani Fard, Ali (Supervisor)
    Abstract
    With the increase of renewable energy generation in power systems, the flexibility of power systems has been challenged and the high potential of resources in active distribution systems for providing flexibility has been noticed by system operators and planners to help system flexibility. In this regard, these resources can participate in the Flexible Ramp Product market which is a new product that is defined for this purpose. In this work, the management of these resources has been modeled in an active distribution system for participating in this market by considering the network constraints, the uncertainty of renewable generation and forecasted prices of products in DA and RT markets,... 

    Morphology-Dependent Electrocatalytic Activity of Silver Nanostructures and Differentia Pulse Voltammetry Determination of Atorvastatin at Silver Nanowires Modified Electrode

    , M.Sc. Thesis Sharif University of Technology Naseri, Amene (Author) ; Shahrokhian, Saeed (Supervisor) ; Hormozi Nezhad, Mohammad Reza (Supervisor)
    Abstract
    In this work two shapes of silver nanostructures including silver nanowires and silver nanocubeswere synthesized by polyol method. Silver nanostructures were characterized by SEM, XRD and UV-Vis spectroscopy. Afterwards the morphology-dependent electrocatalyticperformance of these nanocrystals on the differential pulse behavior of naltrexone (NAL) was investigated. To this aim the differential pulse voltammetric behavior of NAL on a glassy carbon electrode modified with electrochemical deposited gold nanoparticles conjugated with different shapes of silver nanostructures and nafion was investigated. It was proved that silver nanowires show more effective electrocatalytic activity toward... 

    Optimal Ag2S nanoparticle incorporated TiO2 nanotube array for visible water splitting

    , Article RSC Advances ; Volume 4, Issue 15 , 2014 , Pages 7838-7844 ; ISSN: 20462069 Gholami, M ; Qorbani, M ; Moradlou, O ; Naseri, N ; Moshfegh, A. Z ; Sharif University of Technology
    2014
    Abstract
    Free-standing TiO2 nanotube array (TNA) films were fabricated via two-step anodization of a titanium sheet. The X-ray diffraction pattern indicated amorphous TNAs were transformed into anatase after annealing the films at 500 °C in air. The surface of TNA was modified by a sequential-chemical bath deposition (S-CBD) method to fabricate Ag2S nanoparticles and forming TNA/Ag2S-n nanostructure, by varying the number of cycles (n). Based on SEM observations, the produced films consisted of vertically ordered tubular structure arrays, each with 125 nm in diameter and 4.1 μm in length containing silver sulphide nanoparticles of ∼12 nm diameter. X-Ray photoelectron spectroscopy (XPS) confirmed the... 

    Energy planning and policy making; The case study of Iran

    , Article Energy Sources, Part B: Economics, Planning and Policy ; Volume 11, Issue 8 , 2016 , Pages 682-689 ; 15567249 (ISSN) Jafari, H. H ; Vakili, A ; Eshraghi, H ; Hamidinezhad, A ; Naseri, I ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    Due to the limited resources of fossil fuels, energy supply–demand management and planning especially in the supply-side of the energy system have increasingly become very important. This article assesses Iran’s energy system in order to find the main causes of the considerably high energy intensity in the country compared with similar economies in size and production. Accordingly, fundamental policies and strategies are proposed in order to manage the recognized bottlenecks. The conclusions suggest strongly that not only the fossil-based energy system, but also incompatible patterns of production and consumption in the reference energy system as well as the use of conventional technologies... 

    To what extent can surface morphology influence the photoelectrochemical performance of Au:WO3 electrodes?

    , Article Journal of Physical Chemistry C ; Volume 119, Issue 3 , December , 2014 , Pages 1271-1279 ; 19327447 (ISSN) Naseri, N ; Qorbani, M ; Kim, H ; Choi, W ; Moshfegh, A. Z ; Sharif University of Technology
    American Chemical Society  2014
    Abstract
    Considering hydrogen as a future fuel, development of clean energy sources based on solar power is the main human challenge in recent years. Here, for the first time, Au:WO3 photoanodes are synthesized with different Au concentrations and then applied for photoelectrochemical (PEC) water splitting. A comprehensive statistical study on the prepared photoanode surface is conducted to understand the correlation between surface morphology and PEC activity, using atomic force microscopy (AFM). The results clearly justified the maximum surface area observed for the film containing 1 mol % Au. Additionally, X-ray diffraction (XRD) analysis determined that Au nanocrystals have been formed in cubic... 

    Recent progress on doped ZnO nanostructures for visible-light photocatalysis

    , Article Thin Solid Films ; Volume 605 , April , 2015 , Pages 2–19 ; 00406090 (ISSN) Samadi, M ; Zirak, M ; Naseri, A ; Khorashadizade, E ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Global environmental pollution and energy supply demand have been regarded as important concerns in recent years. Metal oxide semiconductor photocatalysts is a promising approach to apply environmental remediation as well as fuel generation from water splitting and carbon dioxide reduction. ZnO nanostructures have been shown promising photocatalytic activities due to their non-toxic, inexpensive, and highly efficient nature. However, its wide band gap hinders photo-excitation for practical photocatalytic applications under solar light as an abundant, clean and safe energy source. To overcome this barrier, many strategies have been developed in the last decade to apply ZnO nanostructured... 

    Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: Recent advances and future development directions

    , Article Journal of Materials Chemistry A ; Volume 5, Issue 45 , 2017 , Pages 23406-23433 ; 20507488 (ISSN) Naseri, A ; Samadi, M ; Pourjavadi, A ; Moshfegh, A. Z ; Ramakrishna, S ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    Graphitic carbon nitride (g-C3N4) is a metal-free conjugated polymer constructed from two-dimensional sheets with a bandgap energy of 2.7 eV, which makes it an applicable and efficient visible-active photocatalyst for H2 production. In the present study, the basic concepts and principles of photocatalytic water splitting have been discussed, and a guide for the selection of appropriate photocatalysts, focusing on the g-C3N4 nanomaterials, has been proposed. Our approach is mainly concentrated on evaluating two factors, namely the solar-to-hydrogen (STH) conversion and apparent quantum yield (AQY) for different photocatalysts, to provide an in-depth analysis and a framework for solar H2... 

    Investigation of Heat Treatment on Microstructure of Bulk Metallic Glass By Molecular Dynamics

    , M.Sc. Thesis Sharif University of Technology Naseri Karimi, Vahid (Author) ; Ashouri, Hossein (Supervisor) ; Tavakoli, Rouhulla (Supervisor)
    Abstract
    Metallic glasses have been applied in industry owing to their attractive mechanical, physical, and chemical properties. such as high electrical resistivity, soft-type superconductivity, good magnetic softness, high strength and large elastic strain. These unusual properties make the amorphous alloys potentially useful for various applications, which originate from the intrinsic random atomic configuration. but their plasticity is low and this disadvantage limites their applicable range as a engineering material. In this study we try to improve plasticity of metallic glasses by structural rejuvenation. Structural rejuvenation in metallic glasses by a thermal process (i.e. through recovery... 

    High-performance UV‐Vis-NIR photodetectors based on plasmonic effect in Au nanoparticles/ZnO nanofibers

    , Article Applied Surface Science ; Volume 483 , 2019 , Pages 1110-1117 ; 01694332 (ISSN) Hosseini, Z. S ; Arab Bafrani, H ; Naseri, A ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, UV‐Vis-NIR photodetectors based on decorated ZnO nanofibers (NFs) with optimized coverage of Au nanoparticles (NPs) fabricated via combined simple electrospinning and sputtering techniques are introduced. The effect of different coverages of Au NPs resulted from different Au nominal layer thicknesses on the morphology and optical properties of the ZnO fibers are investigated through various characterization methods. It is discovered that 4 nm Au nominal thickness provides the highest UV on/off ratio (~460), responsivity (~332 A/W), detectivity (~2.93×10 11 Jones) as well as faster rise and decay times as compared to pure ZnO nanofibers. A broad spectral response from UV to NIR... 

    Enhanced photocatalytic activity of ZnO/g-C3N4 nanofibers constituting carbonaceous species under simulated sunlight for organic dye removal

    , Article Ceramics International ; Volume 47, Issue 18 , 2021 , Pages 26185-26196 ; 02728842 (ISSN) Naseri, A ; Samadi, M ; Pourjavadi, A ; Ramakrishna, S ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Semiconductor-based photocatalysis is an efficient approach for degradation of organic pollutants. In this context, ZnO/g-C3N4 composite nanofibers containing carbonaceous species with different concentrations of g-C3N4 nanosheets (x = 0.25, 0.5, 1, 2, 10 wt%) noted as ZnO/carbon/(x wt%) g-C3N4 are prepared by electrospinning technique. For preparation of the composite nanofibers, bulk g-C3N4 is exfoliated to nanosheets, and then it is mixed with polyvinyl alcohol and appropriate zinc acetate content followed by electrospinning process. Thermal annealing of the as spun zinc acetate/poly(vinyl alcohol)/g-C3N4 nanosheets sample under N2 atmosphere leads to the formation of carbonaceous species... 

    Newly designed ternary hematite-based heterojunction for PEC water splitting

    , Article Applied Surface Science ; Volume 550 , 2021 ; 01694332 (ISSN) Farhoosh, S ; Eftekharinia, B ; Tayebi, M ; Lee, B. K ; Naseri, N ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Hematite is recognized as a promising photoanode for photoelectrochemical water oxidation to produce solar hydrogen due to its favorable properties. However, the high charge carrier recombination rate due to low electrical conductivity and sluggish oxygen reduction kinetics of pure hematite hinder its photocatalytic activity. This work proposed a new hematite-based heterostructure of Ti-Fe2O3/Fe2TiO5/FeOOH, synthesized through a hydrothermal method. The photoanode morphology was branched nanorods that expanded their surface area and improved charge transfer at the photoanode/electrolyte interface. In a novel and complement modification approach, a thin pseudobrookite interlayer was applied... 

    Surface micromorphology and fractal geometry of Co/CP/X (X = Cu, Ti, SM and Ni) nanoflake electrocatalysts

    , Article RSC Advances ; Volume 6, Issue 32 , 2016 , Pages 27228-27234 ; 20462069 (ISSN) Ţəlu, Ş ; Solaymani, S ; Bramowicz, M ; Naseri, N ; Kulesza, S ; Ghaderi, A ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    This paper analyses the three-dimensional (3-D) surface texture of Co/CP/X (X = Cu, Ti, SM and Ni, CP: carbonaceous paste) nanoflakes prepared electrochemically using a conventional three electrode system. The surface chemical composition of the samples was investigated by X-ray photoelectron spectroscopy (XPS). Surface images were recorded using scanning electron microscopy (SEM) and analyzed by means of the fractal geometry. Statistical, fractal and functional surface properties of the prepared samples were computed. The statistical functions applied to the SEM data were employed in order to characterise the surfaces topographically (in amplitude, spatial distribution and pattern of... 

    First-principles study on ZnV2O6 and Zn2V2O7: two new photoanode candidates for photoelectrochemical water oxidation

    , Article Ceramics International ; Volume 44, Issue 6 , 2018 , Pages 6607-6613 ; 02728842 (ISSN) Sameie, H ; Sabbagh Alvani, A. A ; Naseri, N ; Du, S ; Rosei, F ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    We used first principles calculations based on density functional theory with generalized gradient approximation to investigate and compare the structural, electronic and optical properties of two photoanode materials, ZnV2O6 and Zn2V2O7, for use in photocatalytic water splitting. After geometry optimization, the calculated structural parameters evince a satisfactory agreement with the reported experimental results indicating that the used method and conditions are suitable. The electronic structures demonstrate that both photocatalysts possess favorable band gaps (2.31 and 2.52 eV) and appropriate band edge positions for oxygen evolution reaction under solar radiation. The relatively light... 

    Study of Antibacterial Performance of Metal Oxide Nanostructures and their Effect on Bacterial Growth Kinetics

    , M.Sc. Thesis Sharif University of Technology Afkhami, Fatemeh Sadat (Author) ; Naseri, Naimeh (Supervisor) ; Zaker Moshfegh, Alireza (Co-Supervisor)
    Abstract
    Fighting contagious microbial diseases is considered a serious health issue, which has attracted much attention in worldwide. Thus, development of new materials based on nanostructures as a new generation of antibiotics to address this challenge has been of interest to researchers in recent years. Nanostructures based on metallic oxide semiconductors such as oxides with light absorption, production of electron-hole pairs in needle like structures cause tearing bacterial membrane and eventually destroy the bacterium. To this end, we designed experiments to study mechanism and physics governing the process of bacterial degradation to determine the best conditions for inhibiting bacteria...