Loading...
Search for: zaker-moshfegh--a--r
0.146 seconds

    A comparatiwe study of heat-treated Ag: SiO2nanocomposites synthesized by cosputtering and sol-gel methods

    , Article Surface and Interface Analysis ; Volume 41, Issue 3 , 2009 , Pages 157-163 ; 01422421 (ISSN) Sangpoyr, P ; Babapoyr, A ; Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    2009
    Abstract
    In this work, we compared formation and properties of heat-treated Ag nanoparticles in silica matrix synthesized by RF- reactive magnetron cosputtering and sol-gel methods separately. The sol-gel and sputtered films were annealed at different temperatures in air and in a reduced environment, respectively. The optical UV-visible Spectrophotometry have shown that the absorption peak appears at 456 and 400 nm wavelength indicating formation of silver nanoparticles in SiO2 matrix for both the sol -gel and sputtering methods at 100 and 800 °C, respectively. XPS measurements showed that the metallic Ag0 nanoparticles can be obtained from both the techniques at these temperatures. According to XPS... 

    Correlation between surface stochastic parameters and field emission property of NiO nanorods

    , Article Journal of Physics D: Applied Physics ; Vol. 47, Issue. 11 , 2014 ; ISSN: 00223727 Ebrahimi, M ; Qorbani, M ; Bayat, A ; Zavarian, A. A ; Moshfegh, A. Z ; Sharif University of Technology
    2014
    Abstract
    In this research, nickel thin films have been deposited on Si (1 0 0) substrate using the dc sputtering method. Then, the deposited layers were annealed in different temperatures to oxidize and crystallize the as prepared layers. Scanning electron microscopy (SEM) analysis indicated that the nanorod shape of the nickel oxides has grown on the substrate and x-ray photoelectron spectroscopy determined the formation of stoichiometric NiO on the surface. Field emission (FE) measurements of the NiO nanorods exhibited the lowest turn-on electric field at about 3.8 V μm-1 in the 300 μm vacuum gap. Moreover, the field enhancement factor (β) was measured of about 4109 for this sample. The FE... 

    Correlation between surface roughness and hydrophobicity of GLAD RF sputtered PTFE/W/Glass nanorod thin films

    , Article Vacuum ; Vol. 101, issue , March , 2014 , p. 279-282 Bayat, A ; Ebrahimi, M ; Moshfegh, A. Z ; Sharif University of Technology
    2014
    Abstract
    In this research, we have used glancing angle deposition (GLAD) RF sputtering technique with various angular speeds ranging from 5 to 30 RPM to fabricate polytetrafluoroethylene (PTFE, Teflon) coated Tungsten on glass substrate for producing hydrophobic surface. According to scanning electron microscopy (SEM) observations, Tungsten nanorods were formed on the substrate with average diameter and length of about ∼50 nm and 300 nm, respectively. Hydrophobic property of W/Glass and PTFE/W/Glass systems was investigated by water contact angle measurements and we have found that the contact angle varied with the substrate angular speed. Maximum contact angle of 121 was measured for the... 

    Influence of hydrogen reduction on growth of tungsten oxide nanowires

    , Article Journal of Experimental Nanoscience ; Volume 7, Issue 6 , 2012 , Pages 597-607 ; 17458080 (ISSN) Azimirad, R ; Khosravi, P ; Moshfegh, A. Z ; Sharif University of Technology
    2012
    Abstract
    A simple method for synthesising W17O47 nanowires on tungsten oxide thin films deposited by sol-gel method on mica substrate has been reported. After thermally annealing thin films at 700 C in H2 ambient for different durations and subsequently in N2 ambient for 60 min, single-crystalline W17O47 nanowires along h0 01i direction were formed on the surface. Experimental results revealed that annealing under H2 ambient has an important effect on the growth of W17O47 nanowires. According to scanning electron microscopic observations, the synthesised nanowires have ∼70 nm in width and a few microns in length after annealing under H2 ambient for 30min and subsequently under N2 ambient for 60min. A... 

    A comparative study on photoelectrochemical activity of ZnO/TiO2 and TiO2/ZnO nanolayer systems under visible irradiation

    , Article Solar Energy ; Volume 85, Issue 9 , 2011 , Pages 1972-1978 ; 0038092X (ISSN) Naseri, N ; Yousefi, M ; Moshfegh, A. Z ; Sharif University of Technology
    2011
    Abstract
    TiO2/ZnO and ZnO/TiO2 nanolayer thin films were synthesized using sol-gel method. Optical analysis revealed high transmittance of the films in the visible range with almost the same bandgap energy for the both systems. XPS technique shows stoichiometric formation of TiO2 and ZnO on the surface of TiO2/ZnO and ZnO/TiO2 layers, respectively. According to AFM observations and its data analysis, the TiO2/ZnO films exhibited a higher surface roughness and more effective interfaces with electrolyte during redox reactions. Based on photoelectrochemical measurements, TiO2/ZnO nanolayer photoanode possesses a lower charge transfer resistance and higher transient time for charge carriers (e- and h+)... 

    The role of TiO2 addition in ZnO nanocrystalline thin films: Variation of photoelectrochemical responsivity

    , Article Electrochimica Acta ; Volume 56, Issue 18 , July , 2011 , Pages 6284-6292 ; 00134686 (ISSN) Naseri, N ; Yousefi, M ; Moshfegh, A. Z ; Sharif University of Technology
    2011
    Abstract
    In this study, the effects of TiO2 addition on the physical and photoelectrochemical properties of ZnO thin films have been investigated. The (TiO2)x-(ZnO)1-x nanocomposite thin films were dip-coated on both glass and indium tin oxide (ITO)-coated conducting glass substrates with various values of x, specifically 0, 0.05, 0.1, 0.25 and 0.5. Optical properties of the samples were studied by UV-vis spectrophotometry in the range of 300-1100 nm. The optical spectra of the nanocomposite thin films showed high transparency in the visible region. The optical bandgap energy of the (TiO2)x-(ZnO)1-x films increased slightly with increasing values of x. The crystalline structure of the nanocomposite... 

    The effect of heat treatment on physical properties of nanograined (WO 3)1-x-(Fe2O3)x thin films

    , Article Vacuum ; Volume 85, Issue 8 , February , 2011 , Pages 810-819 ; 0042207X (ISSN) Azimirad, R ; Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    2011
    Abstract
    Thin films of (WO3)1-x-(Fe2O 3)x composition were deposited by thermal evaporation on glass substrates and then all samples were annealed at 200-500 °C in air. Optical properties such as transmittance, reflectance, optical bangap energy, and the optical constants of the "as deposited" and the annealed films were studied using ultraviolet-visible spectrophotometry. It was shown that the annealing process changes the film optical properties which were related to Fe2O3 concentration. Moreover, using X-ray photoelectron spectroscopy, we have indicated that WO3 is stoichiometric, while iron oxide was in both FeO and Fe2O3 compositions so that the FeO composition converted to Fe2O3 after the... 

    Visible light active Au:TiO2 nanocomposite photoanodes for water splitting: Sol-gel vs. sputtering

    , Article Electrochimica Acta ; Volume 56, Issue 3 , January , 2011 , Pages 1150-1158 ; 00134686 (ISSN) Naseri, N ; Sangpour, P ; Moshfegh, A. Z ; Sharif University of Technology
    2011
    Abstract
    In this study, pure TiO2 and Au:TiO2 nanocomposite thin films are both synthesized using sol-gel and RF reactive co-sputtering methods. Physical and photoelectrochemical properties of the thin films deposited by each method are compared. The optical density spectra and scanning electron microscopy images of the Au:TiO2 films reveal formation of gold nanoparticles in the all nanocomposite films synthesized by two methods. Moreover, the optical bandgap energy of the thin films decreases with addition of Au nanoparticles. X-ray photoelectron spectroscopy indicates that the presence of gold in metallic state and the formation of TiO2 is stoichiometric. The photoelectrochemical properties of the... 

    Synthesis of W17O47 nanothick plates with preferred orientation and their photocatalytic activity

    , Article Surface and Interface Analysis ; Volume 43, Issue 11 , 2011 , Pages 1397-1402 ; 01422421 (ISSN) Azimirad, R ; Khosravi, P ; Moshfegh, A. Z ; Sharif University of Technology
    2011
    Abstract
    A simple method for synthesis of W17O47 nanothick plates by annealing sol-gel-deposited tungsten oxide thin films on soda lime substrate has been reported. After heat treatment of the dried thin films at 700 °C in N2 ambient for 60 min, W17O47 nanothick plates with [100] orientation were obtained. The synthesized product was characterized and analyzed by, X-ray diffraction (XRD), SEM, XPS and ultraviolet-visible spectrophotometery. According to SEM observations, nanothick plates grew with random orientations on the surface. In addition, it was observed that some of the nanothick plates were constituted from several nanosheets. XRD analysis determined that the nanothick plates were mainly... 

    Hierarchical Co3O4/Co(OH)2 nanoflakes as a supercapacitor electrode: experimental and semi-empirical model

    , Article ACS Applied Materials and Interfaces ; Volume 7, Issue 21 , 2015 , Pages 11172-11179 ; 19448244 (ISSN) Qorbani, M ; Naseri, N ; Moshfegh, A. Z ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    In this research, facile and low cost synthesis methods, electrodeposition at constant current density and anodization at various applied voltages, were used to produce hierarchical cobalt oxide/hydroxide nanoflakes on top of porous anodized cobalt layer. The maximum electrochemical capacitance of 601 mF cm-2 at scan rate of 2 mV s-1 was achieved for 30 V optimized anodization applied voltage with high stability. Morphology and surface chemical composition were determined by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis. The size, thickness, and density of nanoflakes, as well as length of the porous anodized Co layer were measured about 460 ± 45 nm,... 

    Visible photoenhanced current-voltage characteristics of Au : TTT iO2 nanocomposite thin films as photoanodes

    , Article Journal of Physics D: Applied Physics ; Volume 43, Issue 10 , 2010 ; 00223727 (ISSN) Naseri, N ; Amiri, M ; Moshfegh, A. Z ; Sharif University of Technology
    2010
    Abstract
    In this investigation, the effect of annealing temperature and concentration of gold nanoparticles on the photoelectrochemical properties of sol-gel deposited Au : TiO2 nanocomposite thin films is studied. Various gold concentrations have been added to the TiO2 thin films and their properties are compared. All the deposited samples are annealed at different temperatures. The optical density spectra of the films show the formation of gold nanoparticles in the films. The optical bandgap energy of the Au : TiO2 films decreases with increasing Au concentration. The crystalline structure of the nanocomposite films is studied by x-ray diffractometry indicating the formation of gold nanocrystals in... 

    Photoenhanced degradation of methylene blue on cosputtered M:TiO 2 (M = Au, Ag, Cu) nanocomposite systems: A comparative study

    , Article Journal of Physical Chemistry C ; Volume 114, Issue 33 , 2010 , Pages 13955-13961 ; 19327447 (ISSN) Sangpour, P ; Hashemi, F ; Moshfegh, A. Z ; Sharif University of Technology
    2010
    Abstract
    Titania thin film system containing noble metallic nanoparticles such as Au, Ag, and Cu have been prepared by utilizing radio frequency reactive magnetron cosputtering method. The structural and morphological properties of the thin films were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). Surface chemical composition of the films was determined by X-ray photoelectron spectroscopy (XPS). Optical properties of the TiO 2 annealed films containing Au, Ag, and Cu metallic nanoparticles were investigated by UV-visible spectrophotometry showing surface plasmon resonance of the metals. The photocatalytic activity of all synthesized samples annealed at 600 °C in an Ar +... 

    Simple method to synthesize NaxWO3 nanorods and nanobelts

    , Article Journal of Physical Chemistry C ; Volume 113, Issue 30 , 2009 , Pages 13098-13102 ; 19327447 (ISSN) Azimirad, R ; Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    2009
    Abstract
    A simple method for synthesis of NaxWO3 nanorods and nanobelts on sputtered tungsten films by using sodium in soda lime substrate as the catalyst was reported for the first time. After thermally post annealing thin films in a temperature range of 600-750 °C in N2 ambient for 80 min, crystalline NaxWO3 nanorods and nanobelts with [001] direction were formed depending on the annealing temperature. Experimental results reveal that the annealing temperature at 700 °C is the optimum temperature for the growth of sodium-doped tungsten oxide nanorods with maximum density on the surface. According to scanning electron microscopic observations, the synthesized nanorods are ∼50 nm in width and a few... 

    Constructing BiVO4/Graphene/TiO2 nanocomposite photoanode for photoelectrochemical conversion applications

    , Article Journal of Electroanalytical Chemistry ; Volume 763 , 2016 , Pages 1-9 ; 15726657 (ISSN) Yousefzadeh, S ; Faraji, M ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    BiVO4/Graphene/TiO2 as a novel nanocomposite photoanode was designed, synthesized and characterized for photoelectrochemical application. BiVO4/Graphene nanocomposite was initially synthesized by photocatalytic process and then, BiVO4/Graphene/TiO2 nanocomposite thin film was prepared by deposition of the BiVO4/Graphene solution onto the surface of sol-gel derived TiO2 thin film. Morphology, crystal structure, surface chemical composition and optical properties of the synthesized BiVO4/Graphene/TiO2 nanocomposite thin film were characterized and compared with the BiVO4/Graphene and pure TiO2 samples. Observations of scanning electron microscopy (SEM) images revealed that the surface of the... 

    Fabrication and the electrochemical activation of network-like MnO2 nanoflakes as a flexible and large-area supercapacitor electrode

    , Article Journal of Solid State Electrochemistry ; Volume 22, Issue 11 , 2018 , Pages 3507-3514 ; 14328488 (ISSN) Mardi, S ; Moradlou, O ; Moshfegh, A. Z ; Sharif University of Technology
    2018
    Abstract
    Porous network-like MnO2 thick films are successfully synthesized on a flexible stainless steel (SS) mesh using a simple and low-cost electrodeposition method followed by an electrochemical activation process. Morphology, chemical composition, and crystal structure of the prepared electrodes before and after the activation process are determined and compared by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analyses. The results show that the implementation of the electrochemical activation process does not change the chemical composition and crystal structure of the films, but it influences the surface morphology of the MnO2... 

    RF reactive co-sputtered Au-Ag alloy nanoparticles in SiO 2 thin films

    , Article Applied Surface Science ; Volume 253, Issue 18 , 2007 , Pages 7438-7442 ; 01694332 (ISSN) Sangpour, P ; Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier  2007
    Abstract
    We have studied formation of Au-Ag alloy nanoparticles in sputtered SiO 2 thin films. Silica thin films containing Au-Ag nanoparticles were deposited on quartz substrates using rf reactive magnetron co-sputtering technique. The films heat-treated in reducing Ar + H 2 atmosphere at different temperatures. They were analyzed by using UV-vis spectrophotometry, atomic force microscopy and X-ray photoelectron spectroscopy (XPS) methods for their optical, surface morphological as well as structural and chemical properties. The optical absorption of the Au-Ag alloy nanoparticles illustrated one plasmon resonance absorption peak located at 450 nm between the absorption bands of pure Au and Ag... 

    The effect of Si addition and Ta diffusion barrier on growth and thermal stability of NiSi nanolayer

    , Article Microelectronic Engineering ; Volume 85, Issue 3 , 2008 , Pages 548-552 ; 01679317 (ISSN) Kargarian, M ; Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    2008
    Abstract
    Formation and thermal stability of nanothickness NiSi layer in Ni(Pt 4 at.%)/Si(1 0 0) and Ni0.6Si0.4(Pt 4 at.%)/Si(1 0 0) structures have been investigated using magnetron co-sputtering deposition method. Moreover, to study the effect of Si substrate in formation of NiSi and its thermal stability, we have used Ta diffusion barrier between the Ni0.6Si0.4 layer and the Si substrate. Post annealing treatment of the samples was performed in an N2 environment in a temperature range from 200 to 900 °C for 2 min. The samples were analyzed by four point probe sheet resistance (Rs) measurement, X-ray diffraction (XRD) and atomic force microscopy (AFM) techniques. It was found that the annealing... 

    CVD growth of the nanostructured Ni3S2 thin films as efficient electrocatalyst for hydrogen evolution reaction

    , Article Vacuum ; Volume 188 , June , 2021 ; 0042207X (ISSN) Kajbafvala, M ; Moradlou, O ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The development of low cost and earth abundant electrocatalyst with high performance and desirable stability for hydrogen evolution reaction (HER) is an important issue in energy applications. Nickel sulfide thin films (NiSx) are formed on conductive nickel foam substrates via chemical vapor deposition (CVD) at 300 °C under low pressure condition. A single phase of Ni3S2 was produced by controlling the ratio of precursors. X-ray diffraction (XRD), field emission scanning electron spectroscopy (FESEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements were conducted to characterize and compare properties of the samples. According to XRD and XPS data analysis, the growth... 

    A new designed linear Fresnel lens solar concentrator based on spectral splitting for passive cooling of solar cells

    , Article Energy Conversion and Management ; Volume 230 , 2021 ; 01968904 (ISSN) Kiyaee, S ; Saboohi, Y ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The use of solar concentrators can be an alternative for initial cost reduction in the PV systems. However, they suffer from high cell temperature that can be overcome by different active or passive cooling approaches. Spectral splitting and the elimination of high-energy solar photons are effective solutions for cell temperature reduction. In this study, we developed a Polymethyl methacrylate Spectral Splitting Fresnel Lens (SSFL) for linear concentration using a new design, which directs the desired portion of the spectrum towards the cell and diffracts the rest to eliminate the use of beam splitters or nanofluids in the spectral splitting system. Different SSFLs were considered for... 

    Influence of coloring voltage and thickness on electrochromical properties of e-beam eaporated W O3 thin films

    , Article Journal of the Electrochemical Society ; Volume 153, Issue 2 , 2006 , Pages E11-E16 ; 00134651 (ISSN) Azimirad, R ; Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    2006
    Abstract
    In this investigation, the effect of coloring voltage and thickness on optical and also electrochromical properties of W O3 thin films has been studied. The W O3 thin films were grown on glass and indium tin oxide coated conducting glass substrates by e-beam evaporation at different thicknesses of 200, 400, and 700 nm. Optical properties of the deposited samples were characterized in the ultraviolet-visible range (300-1100 nm). The optical bandgap energy of the W O3 was obtained in a range of 3.3-3.5 eV showing its increase by decreasing the film thickness. The refractive index of the W O3 films was measured around 2 in the visible range. Surface chemical states of the films were studied by...