Loading...
Search for: esfarjani--k
0.084 seconds

    Screening at doped nanotube junctions beyond linear response

    , Article Physical Review B - Condensed Matter and Materials Physics ; Volume 65, Issue 16 , 2002 , Pages 1654151-1654155 ; 01631829 (ISSN) Farajian, A. A ; Esfarjani, K ; Esfarjani, K ; Mikami, M ; Sharif University of Technology
    2002
    Abstract
    Screening length at doped nanotube junctions, which is of primary importance in device applications, has been a controversial issue. Employing a fully self-consistent tight-binding approach, we show that, for both sharp and smooth external potential drops, the screening length is of the order of a few carbon-ring separations. This rather strong screening of the Coulomb interaction is accompanied by the oscillation of transferred charge at the junction, and is observed for both semiconducting and metallic tubes despite minor differences  

    Gap tuning and effective electron correlation energy in amorphous silicon: A first principles density functional theory-based molecular dynamics study

    , Article Computational Materials Science ; Volume 102 , May , 2015 , Pages 110-118 ; 09270256 (ISSN) Tabatabaei, M ; Shodja, H. M ; Esfarjani, K ; Sharif University of Technology
    Elsevier  2015
    Abstract
    First principles density functional theory (DFT)-based molecular dynamics (MD) is used to study some physical and electronic properties of amorphous silicon (a-Si) samples, as-quenched and annealed containing dangling and floating bonds (pertinent to the threefold- and fivefold-coordinated defects, respectively) as well as distorted tetrahedral bonds. Surprisingly, except for the work of Pantelides (1986) who gave a rough estimate for the effective electron correlation energy, Ueff of a floating bond on the fivefold-coordinated Si, to date, there are no theoretical studies in the literature for the calculation of Ueff pertinent to this type of defect. In this work, Ueff for each type of... 

    Spin filtering and spin diode devices in quantum wire systems

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 27, Issue 3 , 2005 , Pages 325-331 ; 13869477 (ISSN) Shokri, A. A ; Mardaani, M ; Esfarjani, K ; Sharif University of Technology
    2005
    Abstract
    Theoretical studies on the spin-dependent transmission and current-voltage characteristic in a mesoscopic system, which consists of two semi-infinite ferromagnetic (FM) leads (as source and drain) separated by a typical periodic quantum dot (QD) are presented. The calculations are based on the tight-binding model and transfer matrix method, and investigate the magnetoresistance (MR) and the spin polarization within the Landauer-Büttiker formalism. The spin-dependent transport behavior can be controlled via a gate voltage and an applied bias in the ballistic regime. The numerical results are shown for a periodic polymer chain with nonmagnetic (NM) and FM leads, and also, with two FM leads.... 

    Analytical results on coherent conductance in a general periodic quantum dot: Transfer matrix method

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 28, Issue 2 , 2005 , Pages 150-161 ; 13869477 (ISSN) Mardaani, M ; Shokri, A. A ; Esfarjani, K ; Sharif University of Technology
    2005
    Abstract
    In this work, we study the conductance of a general periodic quantum dot (QD) attached to ideal semi-infinite uniform metallic leads (nanocrystals), fully analytically. We propose a new general formula which relates conductance to transfer matrix (TM) for an isolated cell in the periodic dot. The equation describes exactly the dependence of the transmission coefficient (TC) on Fermi energy, dot-size, dot-lead coupling, and gate voltage for an arbitrary periodic dot. Then, we derive a nonlinear equation which gives the resonance, bound, and surface state energies. Finally, the TC has been calculated for gapless, single, and double gap models exactly. Moreover, we have also calculated the... 

    Localization-delocalization transition in a one one-dimensional system with long-range correlated off-diagonal disorder

    , Article Physical Review B - Condensed Matter and Materials Physics ; Volume 72, Issue 17 , 2005 ; 10980121 (ISSN) Cheraghchi, H ; Fazeli, S. M ; Esfarjani, K ; Sharif University of Technology
    2005
    Abstract
    The localization behavior of the one-dimensional Anderson model with correlated and uncorrelated purely off-diagonal disorder is studied. Using the transfer matrix method, we derive an analytical expression for the localization length at the band center in terms of the pair correlation function. It is proved that for long-range correlated hopping disorder, a localization- delocalization transition occurs at the critical Hurst exponent Hc=1 2 when the variance of the logarithm of hopping "σln(t)" is kept fixed with system size N. Numerically, this transition can be expanded to the vicinity of the band center. Based on numerical calculations, finite-size scaling relations are postulated for... 

    Oscillator strength calculations in color centers of diamond and the role of spin

    , Article European Physical Journal B ; Volume 39, Issue 4 , 2004 , Pages 441-446 ; 14346028 (ISSN) Heidari Saani, M ; Vesaghi, M. A ; Esfarjani, K ; Sharif University of Technology
    2004
    Abstract
    A generalized Hubbard model based on a molecular approach is used to calculate many electron wavefunctions of diamond vacancies. We have calculated the oscillator strength of the dipole transition rates from the ground states of the neutral and negatively charged vacancies. The ratio of the oscillator strengths is in very good quantitative agreement with the reported optical spectroscopic data. Electronic configurations in the ground and dipole allowed excited states are presented. With the proposed picture, the much larger oscillator strength of the negatively charged vacancy with respect to other experimentally investigated color centers N-V, H3, X3 and H4 is explained  

    Delocalization of phonons and energy spectrum in disordered nonlinear systems

    , Article Physical Review B ; Volume 101, Issue 22 , 2020 Akaberian, M ; Jafari, S ; Rahimi Tabar, M. R ; Esfarjani, K ; Sharif University of Technology
    American Physical Society  2020
    Abstract
    We study phonon delocalization in disordered media in the presence of nonlinearity. By considering the Fermi-Pasta-Ulam β-model, we show that regardless of whether the initial state of the linear system is localized or not, the final state will be an extended mode after turning on the nonlinear term. We report on the results of an extensive dynamical simulation of a disordered nonlinear system, which show that, independent of the initial mode frequency, in the final state the energy spectrum is excited according to the Kolmogorov spectrum E(ω)∼ω-5/3. Finally, we show that disorder will not cause delocalization of intrinsic localized modes. © 2020 American Physical Society  

    Ground-state energy and compressibility of a disordered two-dimensional electron gas

    , Article International Journal of Modern Physics B ; Volume 21, Issue 13-14 , 2007 , Pages 2134-2144 ; 02179792 (ISSN) Tanatar, B ; Subaşi, A. L ; Esfarjani, K ; Fazeli, S. M ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2007
    Abstract
    Two-dimensional (2D) electron systems in the presence of disorder are of interest in connection with the observed metal-insulator transition in such systems. We use density functional theory in its local-spin density approximation (LSDA) to calculate the ground-state energy of a 2D electron system in the presence of remote charged impurities which up on averaging provides disorder. The inverse compressibility calculated from the ground-state energy exhibits a minimum at a critical density controlled by the disorder strength. Our findings are in agreement with experimental results. © World Scientific Publishing Company  

    Generalized Hubbard model for many-electron states of the diamond vacancies: A non-CI approach

    , Article Physica Status Solidi (B) Basic Research ; Volume 243, Issue 6 , 2006 , Pages 1269-1275 ; 03701972 (ISSN) Heidari Saani, M ; Vesaghi, M. A ; Esfarjani, K ; Shafiekhani, A ; Sharif University of Technology
    2006
    Abstract
    Many-electron calculations based on a generalized Hubbard Hamiltonian for electronic states of the diamond vacancies are reported. The model does not use the configuration interaction (CI) method and proper tetrahedral symmetry and spin properties of the defect are included in the Hamiltonian. Atomic orbital bases are introduced for the Hamiltonian calculation. Excited states of both neutral and negatively charged vacancies in diamond are calculated. The calculated values for the experimentally observed first dipole transition energies of the vacancies in diamond, GR1 and ND1 bands, are in good agreement with experiment. To obtain these results, we used a semi-empirical Hamiltonian... 

    Details of a theoretical model for electronic structure of the diamond vacancies

    , Article Proceedings of the 9th International Conference on New Diamond, Tokyo, 26 March 2004 through 29 March 2004 ; Volume 13, Issue 11-12 , 2004 , Pages 2125-2130 ; 09259635 (ISSN) Saani, M. H ; Vesaghi, M. A ; Esfarjani, K ; Shafiekhani, A ; Sharif University of Technology
    2004
    Abstract
    A new model to calculate electronic states of the diamond vacancies has been developed using many body techniques. This model is based on physical assumptions of previous molecular models but does not use configuration interaction. Present model allows an accurate and unified treatment of electronic levels and related eigen functions for diamond vacancies, in addition to transition energies of the first dipole-allowed transitions in the neutral (V0) and negatively charged (V-) vacancies, GR1 and ND1 band. For the first time, we calculated their optical transition intensities. For obtaining these results, we solved a generalized form of the Hubbard Hamiltonian, which consists of all... 

    Many-electron states of nitrogen-vacancy centers in diamond and spin density calculations

    , Article Physical Review B - Condensed Matter and Materials Physics ; Volume 84, Issue 16 , 2011 ; 10980121 (ISSN) Ranjbar, A ; Babamoradi, M ; Heidari Saani, M ; Vesaghi, M. A ; Esfarjani, K ; Kawazoe, Y ; Sharif University of Technology
    2011
    Abstract
    Using a generalized Hubbard Hamiltonian, many-electron calculations of energy levels and corresponding wave functions of negatively charged and neutral nitrogen-vacancy centers in diamond were reported. The energies, orbital, and spin symmetries of the ground and excited states are in good quantitative agreement with available optical and electron paramagnetic resonance measurements. The many-electron wave functions were employed to predict the spin density on the N and C atoms in the ground and excited states. The present model explains the recent, experimentally observed definite nonzero spin density on N atom for the 4A2 excited state of the neutral charge state of NV (NV0) based on the... 

    Molecular dynamics of single wall carbon nanotube growth on nickel surface

    , Article Computational Materials Science ; Volume 36, Issue 1-2 , 2006 , Pages 117-120 ; 09270256 (ISSN) Esfarjani, K ; Gorjizadeh, N ; Nasrollahi, Z ; Sharif University of Technology
    2006
    Abstract
    Growth mechanism of a single wall carbon nanotube on the surface of a nickel nanoparticle in the CVD method has been investigated by classical molecular dynamics method. Using first principles methods, we have first constructed a classical potential to describe the interaction between a carbon atom and the nickel surface. The important ingredient in this potential is its coordination number dependence, which also provides the key to the growth mechanism of the nanotube. From the simulations, it is proposed that the growth of an armchair nanotube takes place via attachment of dimers to its end which is in contact with the nickel surface. The effect of nickel nanoparticle's radius on the... 

    Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation

    , Article Physical Review B - Condensed Matter and Materials Physics ; Volume 73, Issue 8 , 2006 ; 10980121 (ISSN) Esfarjani, K ; Zebarjadi, M ; Kawazoe, Y ; Sharif University of Technology
    2006
    Abstract
    Thermoelectric properties of a nanocontact made of two capped single wall carbon nanotubes (SWCNT) are calculated within the tight-binding approximation and by using Green's function method. It is found that doped semiconducting nanotubes can have high Seebeck coefficients. This in turn leads to very high figures of merit (ZT) for p -doped tubes which turn out to have also a large electrical to thermal conductivity ratio. Transport in the nanocontact device is dominated by quantum interference effects, and thus it can be tuned by doping (charge transfer and/or impurity potential) or application of a (nano-)gate voltage, or a magnetic field. Another reason for high ZT in this device is the... 

    Electronic properties of magnetically doped nanotubes

    , Article Bulletin of Materials Science ; Volume 26, Issue 1 , 2003 , Pages 105-107 ; 02504707 (ISSN) Esfarjani, K ; Chen, Z ; Kawazoe, Y ; Sharif University of Technology
    Indian Academy of Sciences  2003
    Abstract
    Effect of doping of carbon nanotubes by magnetic transition metal atoms has been considered in this paper. In the case of semiconducting tubes, it was found that the system has zero magnetization, whereas in metallic tubes the valence electrons of the tube screen the magnetization of the dopants: the coupling to the tube is usually antiferromagnetic (except for Cr)  

    Lattice relaxation in many-electron states of the diamond vacancy

    , Article Physical Review B - Condensed Matter and Materials Physics ; Volume 71, Issue 3 , 2005 ; 10980121 (ISSN) Heidari Saani, M ; Vesaghi, M. A ; Esfarjani, K ; Ghods Elahi, T ; Sayari, M ; Hashemi, H ; Gorjizadeh, N ; Sharif University of Technology
    2005
    Abstract
    Symmetric lattice relaxation around a vacancy in diamond and its effect on many electron states of the defect have been investigated. A molecular approach is used to evaluate accurately electron-electron (e-e) interaction via a semiempirical formalism which is based on a generalized Hubbard Hamiltonian. Coupling of the defect molecule to surrounding bulk is also considered using an improved Stillinger-Weber potential for diamond. Strong dependence of the electronic energy levels to the relaxation size of the nearest neighbor (NN) atoms indicates that in order to obtain quantitative results the effect of lattice relaxation should be considered. Except for the high spin state of the defect 5A... 

    Transport properties of a nanotube-based transistor

    , Article European Physical Journal D ; Volume 8, Issue 3 , 2001 , Pages 353-355 ; 14346060 (ISSN) Esfarjani, K ; Farajian, A. A ; Ebrahimi, F ; Kawazoe, Y ; Sharif University of Technology
    Springer New York  2001
    Abstract
    Transport properties of doped nanotube-based double junctions forming a nanotransistor and investigated within the tight binding formalism. The effects of doping gate length and gate soften have been considered. It is found that in addition to the importance of rotational symmetry in determining transport properties, large gains can be achieved for semiconducting doped tubes  

    Nonlinear charging and transport times in doped nanotubes junctions

    , Article Journal of the Physical Society of Japan ; Volume 74, Issue 2 , 2005 , Pages 515-518 ; 00319015 (ISSN) Esfarjani, K ; Farajian, A. A ; Kawazoe, Y ; Chui, S. T ; Sharif University of Technology
    2005
    Abstract
    The nonlinear capacitance in doped nanotube junctions is calculated self consistently. A negative differential capacitance is observed when the applied bias becomes larger than the pseudogap of the metallic armchair nanotube. For this device, one can deduce a relaxation time of approximately 0.1 fs. Because of its negative differential resistance (NDR), a switching time of less than a femtosecond, i.e., at least three orders smaller than present-day switching times, can also be estimated. This effect is important in designing ultrafast nano-electronic components. ©2005 The Physical Society of Japan  

    Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective

    , Article Journal of Alloys and Compounds ; Volume 781 , 2019 , Pages 945-983 ; 09258388 (ISSN) Azarniya, A ; Taheri, A. K ; Taheri, K. K ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Al-Zn-Mg-Cu alloys (7xxx series Al alloys) are extensively used for their superior mechanical and corrosion performance. These properties are microstructure-sensitive and highly dependent on the formation, growth and coarsening of precipitates. To date, a wide variety of ageing procedures have been developed to tailor the evolved microstructures so as to yield a good combination of mechanical capacity and corrosion resistance of 7xxx series Al alloys. Among these methods, isothermal ageing, multi-stage ageing, non-isothermal ageing, retrogression and re-ageing (RRA), and stress ageing (i.e. creep ageing) are the most significant. In the present review, all of these approaches are... 

    Stiffness and strength estimation of damaged unreinforced masonry walls using crack pattern

    , Article Journal of Earthquake Engineering ; Volume 26, Issue 2 , 2022 , Pages 837-856 ; 13632469 (ISSN) Dolatshahi, K. M ; Beyer, K ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    After an earthquake, the residual stiffness and strength of structural elements are typically estimated based on a qualitative visual inspection of cracks that is prone to error. In this paper a new approach is proposed to automatically estimate the updated stiffness and strength of damaged unreinforced masonry walls by characterization of crack patterns by a mathematical index. It is shown that structural and textural fractal dimensions of a crack pattern reflect the extent of cracking and the type of cracking or crushing, i.e., whether the cracks pass through joints or whether bricks have been damaged and crushed. Using results of six quasi-static cyclic tests on unreinforced brick masonry... 

    Influence of heat treatment and aging on microstructure and mechanical properties of Mg-1.8Zn-0.7Si-0.4Ca alloy

    , Article Materialwissenschaft und Werkstofftechnik ; Volume 50, Issue 2 , 2019 , Pages 187-196 ; 09335137 (ISSN) Shaeri, M ; Taheri, K. K ; Taheri, A. K ; Shaeri, M. H ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Abstract
    In order to optimize the aging treatment of Mg-1.8Zn-0.7Si-0.4Ca alloy, different times and temperatures of solid solution and age hardening were applied to the alloy specimens. Microstructures and mechanical properties of the specimens were investigated using the optical microscopy, field emission scanning electron microscopy equipped with an energy dispersive x-ray spectrometer, x-ray diffraction, hardness, and shear punch tests. The lowest hardness and strength were achieved by solution treating of the alloy at 500 °C for 8 h, presenting the optimal condition for solution treatment of the alloy. The microstructural examinations revealed three different precipitates consisting of CaMgSi,...