Loading...
Search for: moghadas--h
0.113 seconds

    A hybrid model for simulation of fluid-structure interaction in water entry problems

    , Article Physics of Fluids ; Volume 33, Issue 1 , 2021 ; 10706631 (ISSN) Moradi, H ; Rahbar Ranji, A ; Haddadpour, H ; Moghadas, H ; Sharif University of Technology
    American Institute of Physics Inc  2021
    Abstract
    A hydroelastic hybrid model is developed to simulate the fluid-structure interaction in water entry problems using the partitioned approach. The interactions between a flat plate and the water are modeled by a hydroelastic model using explicit and implicit couplings. Both couplings are unstable due to numerical instability associated with the fluid added mass. To overcome the instability, an extended Wagner's model is combined with the hydroelastic model, and a hybrid model is developed. The extended Wagner's model is the extension of the classical Wagner's model that is used to estimate the fluid inertial, damping, and restoring forces of a flexible plate within the potential flow theory.... 

    Experimental investigation of rest time effect on permanent deformation of asphalt concrete

    , Article Journal of Materials in Civil Engineering ; Volume 28, Issue 5 , 2016 ; 08991561 (ISSN) Moghadas Nejad, F ; Sorkhabi, H ; Karimi, M. M ; Sharif University of Technology
    American Society of Civil Engineers (ASCE)  2016
    Abstract
    Asphalt concrete is a complex mixture, the behavior of which is dependent on its components while showing different nonlinear behaviors under various conditions. Application of rest time between compressive loading cycles causes hardening-relaxation (H-R) behavior in the sample and increases the deformation potential of the sample. This process might induce changes in the microstructure and the pattern of the placement and rotation of the aggregates. These changes cause a relaxation in the hardening of the material, pose a higher potential of reception of viscoplastic strain in the following cycles, and increase the rate of accumulation of the permanent deformation in contrast with creep... 

    Plasma based surface modication of poly (dimethylsiloxane) electrospun membrane proper for organ-on-a-chip applications

    , Article Scientia Iranica ; Volume 26, Issue 2 , 2019 , Pages 808-814 ; 10263098 (ISSN) Kiyoumarsioskouei, A ; Saidi, M. S ; Moghadas, H ; Firoozabadi, B ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    Electrospun porous membrane; Superhydrophilic surfaces; Superhydrophobic surfaces; Cell culture; Organ on a chip; Flexible membrane; Strong membrane; Surface modications  

    Plasma based surface modication of poly (dimethylsiloxane) electrospun membrane proper for organ-on-a-chip applications

    , Article Scientia Iranica ; Volume 26, Issue 2 , 2019 , Pages 808-814 ; 10263098 (ISSN) Kiyoumarsioskouei, A ; Saidi, M. S ; Moghadas, H ; Firoozabadi, B ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    onstructing of the scaffolds for cell culture applications has long been of interest for engineering researchers and biologist. In this study, a novel process is utilized for construction of suitable membrane with a high mechanical strength and appropriate surface behavior. Poly (dimethylsiloxane) (PDMS) is electrospun into fine fibers using poly (methyl methacrylate) (PMMA) as the carrier polymer in different weight ratios. Since the surface behavior of all PDMS substrates is moderately hydrophobic (120 < contact angle (CA) < 150), the electrospun membranes with higher PDMS ratios show slightly higher hydrophilicity. Direct plasma treatment is utilized to change the interfacial wettability... 

    The Effectiveness of Mnemonic Devices, Visualization and Pictorial Techniques on Vocabulary Learning Process

    , M.Sc. Thesis Sharif University of Technology Moghadas, Behrouz (Author) ; Jahangard, Ali (Supervisor)
    Abstract
    The importance of having a rich repertoire of vocabulary at one’s disposal is evidently an undeniable fact for a successful communication. However, the best way to improve the lexical knowledge of the students is an issue that is still open to dispute. Considering this issue the present study focused on vocabulary learning strategies in L2 teaching. Actually, this study aimed at investigating three different methods of teaching new words to Iranian students in order to determine which one of the methods is more effective in terms of immediate and delayed retention. So the researchers strived to examine the question of how two different mnemonic devices, i.e., the Keyword method and the... 

    Design, Simulation and Fabrication of Human Pulmonary Alveolus Model on a Microchip

    , Ph.D. Dissertation Sharif University of Technology Moghadas, Hajar (Author) ; Saeedi, Mohammad Saeed (Supervisor)
    Abstract
    Microfluidic systems create great development in diseases and drug delivery in various organs of the body. In this study, human pulmonary alveolar cell performance was evaluated from the perspective of the cell culture using a microfluidic system. For this purpose, numerical simulations of the microchip channels flow field are very important to select appropriate models. So in the first step, the flow field and particle deposition were simulated. Then an optimal model was selected based on key parameters such as cell feeding, shear stress exerted on the cell, particles distribution and also the limitations and possibilities for constructing. The numerical results show that the shear stress,... 

    Viscoelastic-based approach to evaluate low temperature performance of asphalt binders

    , Article Construction and Building Materials ; Volume 128 , 2016 , Pages 384-398 ; 09500618 (ISSN) Jahanbakhsh, H ; Karimi, M. M ; Moghadas Nejad, F ; Jahangiri, B ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Through the strategic highway research program (SHRP) project, time-temperature superposition (TTS) was used to reduce the loading time of bending beam rheometer (BBR) test. Based on TTS, stiffness of the asphalt binder after a two-hour loading time is similar to that after 60 s at 10 °C above. This study attempted to evaluate the TTS validity using finite element (FE) method by developing master curves in a broad range of low temperatures. The results indicated that TTS was neither valid for modified asphalt binders nor for neat binder. Also, in addition to the loading time dependency of m-value, limiting values of stiffness and m-value find no rheological acceptance. As a remedy, thermally... 

    Challenge in particle delivery to cells in a microfluidic device

    , Article Drug Delivery and Translational Research ; Volume 8, Issue 3 , 2018 , Pages 830-842 ; 2190393X (ISSN) Moghadas, H ; Saidi, M. S ; Kashaninejad, N ; Nguyen, N. T ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Micro and nanotechnology can potentially revolutionize drug delivery systems. Novel microfluidic systems have been employed for the cell culture applications and drug delivery by micro and nanocarriers. Cells in the microchannels are under static and dynamic flow perfusion of culture media that provides nutrition and removes waste from the cells. This exerts hydrostatic and hydrodynamic forces on the cells. These forces can considerably affect the functions of the living cells. In this paper, we simulated the flow of air, culture medium, and the particle transport and deposition in the microchannels under different angles of connection inlet. It was found that the shear stress induced by the... 

    A high-performance polydimethylsiloxane electrospun membrane for cell culture in lab-on-a-chip

    , Article Biomicrofluidics ; Volume 12, Issue 2 , April , 2018 ; 19321058 (ISSN) Moghadas, H ; Saidi, M. S ; Kashaninejad, N ; Nguyen, N. T ; Sharif University of Technology
    American Institute of Physics Inc  2018
    Abstract
    Thin porous membranes are important components in a microfluidic device, serving as separators, filters, and scaffolds for cell culture. However, the fabrication and the integration of these membranes possess many challenges, which restrict their widespread applications. This paper reports a facile technique to fabricate robust membrane-embedded microfluidic devices. We integrated an electrospun membrane into a polydimethylsiloxane (PDMS) device using the simple plasma-activated bonding technique. To increase the flexibility of the membrane and to address the leakage problem, the electrospun membrane was fabricated with the highest weight ratio of PDMS to polymethylmethacrylate (i.e., 6:1... 

    Organ-tumor-on-a-chip for chemosensitivity assay: A critical review

    , Article Micromachines ; Volume 7, Issue 8 , 2016 ; 2072666X (ISSN) Kashaninejad, N ; Nikmaneshi, M. R ; Moghadas, H ; Kiyoumarsi Oskouei, A ; Rismanian, M ; Barisam, M ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    MDPI AG  2016
    Abstract
    With a mortality rate over 580,000 per year, cancer is still one of the leading causes of death worldwide. However, the emerging field of microfluidics can potentially shed light on this puzzling disease. Unique characteristics of microfluidic chips (also known as micro-total analysis system) make them excellent candidates for biological applications. The ex vivo approach of tumor-on-a-chip is becoming an indispensable part of personalized medicine and can replace in vivo animal testing as well as conventional in vitro methods. In tumor-on-a-chip, the complex three-dimensional (3D) nature of malignant tumor is co-cultured on a microfluidic chip and high throughput screening tools to evaluate... 

    Spheroids-on-a-chip: recent advances and design considerations in microfluidic platforms for spheroid formation and culture

    , Article Sensors and Actuators, B: Chemical ; Volume 263 , 15 June , 2018 , Pages 151-176 ; 09254005 (ISSN) Moshksayan, K ; Kashaninejad, N ; Ebrahimi Warkiani, M ; Lock, J. G ; Moghadas, H ; Firoozabadi, B ; Saidi, M. S ; Nguyen, N. T ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    A cell spheroid is a three-dimensional (3D) aggregation of cells. Synthetic, in-vitro spheroids provide similar metabolism, proliferation, and species concentration gradients to those found in-vivo. For instance, cancer cell spheroids have been demonstrated to mimic in-vivo tumor microenvironments, and are thus suitable for in-vitro drug screening. The first part of this paper discusses the latest microfluidic designs for spheroid formation and culture, comparing their strategies and efficacy. The most recent microfluidic techniques for spheroid formation utilize emulsion, microwells, U-shaped microstructures, or digital microfluidics. The engineering aspects underpinning spheroid formation... 

    Fabrication and characterization of low-cost, bead-free, durable and hydrophobic electrospun membrane for 3D cell culture

    , Article Biomedical Microdevices ; Volume 19, Issue 4 , 2017 ; 13872176 (ISSN) Moghadas, H ; Saidi, M. S ; Kashaninejad, N ; Kiyoumarsioskouei, A ; Trung Nguyen, N ; Sharif University of Technology
    2017
    Abstract
    This paper reports the fabrication of electrospun polydimethylsiloxane (PDMS) membranes/scaffolds that are suitable for three-dimensional (3D) cell culture. Through modification the ratio between PDMS and polymethylmethacrylate (PMMA) as carrier polymer, we report the possibility of increasing PDMS weight ratio of up to 6 for electrospinning. Increasing the PDMS content increases the fiber diameter, the pore size, and the hydrophobicity. To our best knowledge, this is the first report describing beads-free, durable and portable electrospun membrane with maximum content of PDMS suitable for cell culture applications. To show the proof-of-concept, we successfully cultured epithelial lung... 

    In Silico Lung-on-a-Chip Simulation for Disease Modeling and Drug Delivery Purposes

    , M.Sc. Thesis Sharif University of Technology Sarrami, Shadi (Author) ; Bastani, Dariush (Supervisor) ; Mashayekhan, Shohreh (Supervisor) ; Moghadas, Hajar (Co-Supervisor)
    Abstract
    Organ-on-chip microfluidic devices create a three-dimensional and dynamic model that allows researchers to model diseases and test different drug candidates. In this regard, using a lung-on-a-chip microfluidic device, Covid-19 disease was numerically modeled. Initially, the distribution of oxygen concentration in the blood and respiratory membrane in the healthy state; when the respiratory membrane is the only barrier between air and blood; was found and observed that in this case, the length that the blood had to travel to reach full saturation was the same in the alveolar capillaries and the lung-on-a-chip microdevice. Then, to simulate the different phases of the disease, the formation of... 

    Design and Fabrication of a Microfluidic Kidney Nephron-on-Chip Platform

    , M.Sc. Thesis Sharif University of Technology Yahyazadeh Shourabi, Arash (Author) ; Saeedi, Mohammad Saeed (Supervisor) ; Hajilouy Benisi, Ali (Supervisor) ; Moghadas, Hajar (Co-Supervisor)
    Abstract
    In this manuscript, we designed and fabricated a novel integrated microfluidic Kidney Nephron-On-Chip. This chip is able to culture cell monolayers under various fluid shear stresses and divert osmotic pressure gradients while imposing four different concentrations of an injected drug on cells. The multi-layer platform consisting of two bubble-trappers to eliminate all unwanted bubbles from the system, a concentration gradient generator to generate four different concentrations of the injected drug, and a membrane-based cell culture chamber caple of providing renal cells with their in-vivo condition. Using colorimetric techniques, the bubble trapper ability was quantified at flow rates up to... 

    Nonlinear interstory drift contours for idealized forward directivity pulses using "modified fish-bone" models

    , Article Advances in Structural Engineering ; Volume 18, Issue 5 , May , 2015 , Pages 603-627 ; 13694332 (ISSN) Khalo, A. R ; Khosravi, H ; Jamnani, H. H ; Sharif University of Technology
    Multi-Science Publishing Co. Ltd  2015
    Abstract
    Four 5-, 10-, 20- and 30-story moment frames, representing low-, mid-, and two high-rise structures, were subjected to a great number of idealized directivity pulses. The amplitudes and periods of pulses vary from 0.02 g to 1.0 g and 0.5 to 12 sec, respectively. Over 1400 nonlinear dynamic analyses of low- to high-rise moment frames were performed which were feasible through using modified fish-bone model. The distribution of interstory drift along the height was studied and two applied contours were proposed: (i) the maximum interstory drift contour, and (ii) the critical story contour. These contours were demonstrated versus the ratio of natural period of the structure to the pulse period... 

    Analysis of singularities of a 3DOF parallel manipulator based on a novel geometrical method

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Pendar, H ; Sadeghian, H ; Roozbehani, H ; Zohoor, H ; Sharif University of Technology
    2006
    Abstract
    In this article singular points of a parallel manipulator are obtained based on a novel geometrical method. Here we introduce the constrained plain method (CPM) and some of its application in parallel mechanism. Given the definition of constraint plane (CP) and infinite constraint plane (ICP) the dependency conditions of constraints is achieved with the use of a new theorem based on the Ceva geometrical theorem. The direction of angular velocity of a body is achieved by having three ICPs with the use of another theorem. Finally, with the use of the above two novel theorems singularities of the 3UPF_PU mechanism are obtained. It should be emphasized that this method is completely geometrical,... 

    Melting enthalpy and entropy of freestanding metallic nanoparticles based on cohesive energy and average coordination number

    , Article Journal of Physical Chemistry C ; Volume 115, Issue 35 , August , 2011 , Pages 17310-17313 ; 19327447 (ISSN) Omid, H ; Delavari H., H ; Madaah Hosseini, H. R ; Sharif University of Technology
    2011
    Abstract
    An analytical model is proposed to study the effect of particle size on melting enthalpy and entropy of metallic nanoparticles (NPs). The Mott's and Regel's equations for melting entropy in the combination of core average coordination number (CAC) and surface average coordination number (SAC) of freestanding NPs are considered. Clusters of icosahedral (IC), body centered cubic (BCC), and body centered tetragonal (BCT) structure without any vacancies and defects are modeled. Using the variable coordination number made this model to be in good agreement with experimental and molecular dynamic (MD) results of different crystal structures. The model predicts melting entropy and enthalpy of... 

    On the temperature and residual stress field during grinding

    , Article WCE 2010 - World Congress on Engineering 2010, 30 June 2010 through 2 July 2010 ; Volume 2 , 2010 , Pages 1196-1200 ; 9789881821072 (ISBN) H-Gangaraj, S. M ; Farrahi, G. H ; Ghadbeigi, H ; Sharif University of Technology
    2010
    Abstract
    Grinding is widely used for manufacturing of components that require fine surface finish and good dimensional accuracy. In this study a thermo-mechanical finite element analysis is conducted to find out how grinding parameters can affect temperature and residual stress distribution in the workpiece. Results of parametric study presented in this work indicate, by carefully selecting the grinding parameters, minimum thermal and mechanical damage can be achieved. Higher workpiece velocities produce higher surface residual stress. By increasing depths of cut, depth of tensile residual stresses increases. Convection heat coefficient does not have any considerable effect on surface residual stress... 

    A new lattic LP-based post filter for adaptive noise cancellers in mobile and vehicular applications

    , Article Proceedings of the 8th IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2008, 16 December 2008 through 19 December 2008, Sarajevo ; 2008 , Pages 407-412 ; 9781424435555 (ISBN) Khorram, S ; Sameti, H ; Veisi, H ; Abutalebi, H. R ; Sharif University of Technology
    2008
    Abstract
    Adaptive Noise Cancellation (ANC) is a well-known technique for background noise reduction in automobile and vehicular environments. The noise fields in automobile and other vehicle interior obey the diffuse noise field model closely. On the other hand, the ANC does not provide sufficient noise reduction in the diffuse noise fields. In this paper, a new multistage post-filter is designed for ANC as a solution to diffuse noise conditions. The designed post-filter is a single channel Linear Prediction (LP) based speech enhancement system. The LP is performed by an adaptive lattice filter and attempts to extract speech components by using intermediate ANC signals. The post-filter has no... 

    Finite element analysis of shot-peening effect on fretting fatigue parameters

    , Article Tribology International ; Volume 44, Issue 11 , 2011 , Pages 1583-1588 ; 0301679X (ISSN) H-Gangaraj, S. M ; Alvandi Tabrizi, Y ; Farrahi, G. H ; Majzoobi, G. H ; Ghadbeigi, H ; Sharif University of Technology
    2011
    Abstract
    Shot peening is widely used to improve the fretting fatigue strength of critical surfaces. Fretting fatigue occurs in contacting parts that are subjected to fluctuating loads and sliding movements at the same time. This paper presents a sequential finite element simulation to investigate the shot peening effects on normal stress, shear stress, bulk stress and slip amplitude, which are considered to be the controlling parameters of fretting damage. The results demonstrated that among the modifications related to shot peening, compressive residual stress has a dominant effect on the fretting parameters