Loading...
Search for: pasharavesh--a
0.115 seconds

    Nonlinear thermo-mechanical vibration analysis of functionally graded beams

    , Article Proceedings of the ASME Design Engineering Technical Conference, 28 August 2011 through 31 August 2011, Washington, DC ; Volume 1, Issue PARTS A AND B , 2011 , Pages 787-792 ; 9780791854785 (ISBN) Fallah, A ; Firoozbakhsh, K ; Pasharavesh, A ; Sharif University of Technology
    2011
    Abstract
    In this paper, nonlinear thermo-mechanical free vibration analysis of functionally graded (FG) beams investigated. Euler-Bernoulli assumptions together with Vo n Karman's strain-displacement relation are employed to derive the nonlinear governing partial differential equation (PDE) of motion. He's variational method is employed to obtain a simple and efficient approximate closed form solution of the nonlinear governing equation. Comparison between results of the present work and those available in literature shows the accuracy of presented technique. Some new results for the nonlinear natural frequencies of the FG beams such as the effect of vibration amplitude, material inhomogeneity and... 

    Stress analysis of functionally graded cylinders subjected to thermo-mechanical loads based on Bernstein polynomials

    , Article ASME 2010 International Mechanical Engineering Congress and Exposition, IMECE 2010, Vancouver, BC, 12 November 2010 through 18 November 2010 ; Volume 9 , 2010 , Pages 243-248 ; 9780791844465 (ISBN) Fallah, A ; Mohammadi Aghdam, M ; Pasharavesh, A ; Sharif University of Technology
    2010
    Abstract
    Stress analysis of thick walled functionally graded (FG) cylindrical pressure vessels subjected to uniform axisymmetric thermo-mechanical loads is presented using Bernstein polynomials. All thermal and mechanical properties except Poisson's ratio of the FG vessels vary through the thickness with arbitrary functions of the radial coordinate. Based on the thermo-elasticity theory, the first law of thermodynamics and axisymmetric assumption, the governing equations of the semi-coupled thermo-elasticity problem reduce to a set of second order boundary value problem. Galerkin method together with Bernstein polynomials is used to obtain solution for the governing equations. The presented method is... 

    Nonlinear free vibration of nanobeams with surface effects considerations

    , Article Proceedings of the ASME Design Engineering Technical Conference, 28 August 2011 through 31 August 2011 ; Volume 7 , August , 2011 , Pages 191-196 ; 9780791854846 (ISBN) Fallah, A ; Firoozbakhsh, K ; Kahrobaiyan, M. H ; Pasharavesh, A ; Sharif University of Technology
    2011
    Abstract
    In this paper, simple analytical expressions are presented for geometrically non-linear vibration analysis of thin nanobeams with both simply supported and clamped boundary conditions. Gurtin-Murdoch surface elasticity together with Euler-Bernoulli beam theory is used to obtain the governing equations of motions of the nanobeam with surface effects consideration. The governing nonlinear partial differential equation is reduced to a single nonlinear ordinary differential equation using Galerkin technique. He's variational approach is employed to obtain analytical solution for the resulted nonlinear governing equation. The effects of different parameters such as vibration amplitude, boundary... 

    Large amplitude thermo-mechanical vibration analysis of asymmetrically laminated composite beams

    , Article Key Engineering Materials, 22 March 2011 through 24 March 2011, Kuala Lumpur ; Volume 471-472 , 2011 , Pages 745-750 ; 10139826 (ISSN) ; 9783037850596 (ISBN) Fallah, A ; Alavijeh, H. S ; Pasharavesh, A ; Aghdam, M. M ; Sharif University of Technology
    2011
    Abstract
    In this paper, simple analytical expression is presented for large amplitude thermomechanical free vibration analysis of asymmetrically laminated composite beams. Euler-Bernoulli assumptions together with Von Karman's strain-displacement relation are employed to derive the nonlinear governing partial differential equation (PDE) of motion. He's variational method is employed to obtain a simple and efficient approximate closed form solution of the nonlinear governing equation. Comparison between results of the present work and those available in literature shows the accuracy of presented technique. Some new results for the nonlinear natural frequencies of the laminated beams such as the effect... 

    Nonlinear vibration analysis of nano to micron scale beams under electric force using nonlocal theory

    , Article Proceedings of the ASME Design Engineering Technical Conference, 28 August 2011 through 31 August 2011 ; Volume 7 , August , 2011 , Pages 145-151 ; 9780791854846 (ISBN) Pasharavesh, A ; Vaghasloo, Y. A ; Ahmadian, M. T ; Moheimani, R ; Sharif University of Technology
    2011
    Abstract
    Electrostatically actuated beams are fundamental blocks of many different nano and micro electromechanical devices. Accurate design of these devices strongly relies on recognition of static and dynamic behavior and response of mechanical components. Taking into account the effect of internal forces between material particles nonlocal theories become highly important. In this paper nonlinear vibration of a microano doubly clamped and cantilever beam under electric force is investigated using nonlocal continuum mechanics theory. Implementing differential form of nonlocal constitutive equation the nonlinear partial differential equation of motion is reformulated. The equation of motion is... 

    Effect of microbeam electrical resistivity on dynamic pull-in voltage of an electrostatically actuated microbeam

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010 ; Volume 10 , 2010 , Pages 271-278 ; 9780791844472 (ISBN) Pasharavesh, A ; Ahmadian, M. T ; Alizadeh Vaghasloo, Y ; Assempour, A ; Sharif University of Technology
    2010
    Abstract
    The dynamic pull-in voltage as a criterion for the system stability is one of the most important effects considered with the dynamics of microstructures. In this study effect of microbeam electrical resistivity on the pull-in voltage of an electrostatically actuated microbeam is investigated. Assuming Euler-Bernoulli theory for the microbeam, two coupled nonlinear partial differential equations are derived for the beam deflection and voltage. The one parameter Galerkin method is implemented to transform the equations to a set of nonlinear coupled ordinary differential equations. Obtained equations are solved implementing the differential quadrature method (DQM). Variation of dynamic pull-in... 

    Control of vibration amplitude, frequency and damping of an electrostatically actuated microbeam using capacitive, inductive and resistive elements

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010, Vancouver, BC ; Volume 10 , 2010 , Pages 263-270 ; 9780791844472 (ISBN) Pasharavesh, A ; Alizadeh Vaghasloo, Y ; Fallah, A ; Ahmadian, M. T ; Sharif University of Technology
    2010
    Abstract
    In this study vibration amplitude, frequency and damping of a microbeam is controlled using a RLC block containing a capacitor, resistor and inductor in series with the microbeam. Applying this method all of the considerable characteristics of the oscillatory system can be determined and controlled with no change in the geometrical and physical characteristics of the microbeam. Euler-Bernoulli assumptions are made for the microbeam and the electrical current through the microbeam is computed by considering the microbeam deflection and its voltage. Considering the RLC block, the voltage difference between the microbeam and the substrate is calculated. Two coupled nonlinear partial... 

    Vibration of a microbeam under ultra-short-pulsed laser excitation considering momentum and heating effect

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010, Vancouver, BC ; Volume 10 , 2010 , Pages 195-200 ; 9780791844472 (ISBN) Pasharavesh, A ; Vaghasloo, Y. A ; Ahmadian, M. T ; Moheimani, R ; Sharif University of Technology
    2010
    Abstract
    In this study, vibration of a microbeam excited by an ultrashort- pulsed laser considering the momentum and heating effect of the laser beam is investigated. When the laser impacts the microbeam, portion of the photons is absorbed by the beam and their energy will be transformed into heat while the others are reflected. The momentum change of the absorbed and reflected laser photons is considered and modeled as a distributed force on the beam. The absorbed thermal energy yields non-uniform thermal stress causing the beam to vibrate. According to short duration of laser pulse, the non-Fourier conduction equation which takes into account the finite propagation speed of thermal energy, is... 

    Characterization of a nonlinear MEMS-based piezoelectric resonator for wideband micro power generation

    , Article Applied Mathematical Modelling ; Volume 41 , 2017 , Pages 121-142 ; 0307904X (ISSN) Pasharavesh, A ; Ahmadian, M. T ; Sharif University of Technology
    Elsevier Inc  2017
    Abstract
    Micro-scale piezoelectric unimorph beams with attached proof masses are the most prevalent structures in MEMS-based energy harvesters considering micro fabrication and natural frequency limitations. In doubly clamped beams a nonlinear stiffness is observed as a result of midplane stretching effect which leads to amplitude-stiffened Duffing resonance. In this study, a nonlinear model of a doubly clamped piezoelectric micro power generator, taking into account geometric nonlinearities including stretching and large curvatures, is investigated. The governing nonlinear coupled electromechanical partial differential equations of motion are determined by exploiting Hamilton's principle. A... 

    Electromechanical modeling and analytical investigation of nonlinearities in energy harvesting piezoelectric beams

    , Article International Journal of Mechanics and Materials in Design ; 2016 , Pages 1-16 ; 15691713 (ISSN) Pasharavesh, A ; Ahmadian, M. T ; Zohoor, H ; Sharif University of Technology
    Springer Netherlands  2016
    Abstract
    Piezoelectric materials are extensively applied for vibrational energy harvesting especially in micro-scale devices where other energy conversion mechanisms such as electromagnetic and electrostatic methods encounter fabrication limitations. A cantilevered piezoelectric bimorph beam with an attached proof (tip) mass for the sake of resonance frequency reduction is the most common structure in vibrational harvesters. According to the amplitude and frequency of applied excitations and physical parameters of the harvester, the system may be pushed into a nonlinear regime which arises from material or geometric nonlinearities. In this study nonlinear dynamics of a piezoelectric bimorph harvester... 

    Coupled electromechanical analysis of MEMS-based energy harvesters integrated with nonlinear power extraction circuits

    , Article Microsystem Technologies ; 2016 , Pages 1-18 ; 09467076 (ISSN) Pasharavesh, A ; Ahmadian, M. T ; Zohoor, H ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    Application of piezoelectric materials in vibration energy harvesters is expanding rapidly, especially in MEMS-based devices, due to their uncomplicated fabrication processes and reasonable power generation potential. In addition to standard power extraction methods, nonlinear switched techniques with capability of generated power enhancement, are previously developed and extensively applied in energy harvesting using piezoelectric materials. In this article, vibratory behavior of bimorph resonant harvesters coupled to nonlinear circuits of energy harvesting including standard and switched techniques is investigated. An analytical approach employing some perturbation technique, is utilized... 

    Electromechanical modeling and analytical investigation of nonlinearities in energy harvesting piezoelectric beams

    , Article International Journal of Mechanics and Materials in Design ; Volume 13, Issue 4 , 2017 , Pages 499-514 ; 15691713 (ISSN) Pasharavesh, A ; Ahmadian, M. T ; Zohoor, H ; Sharif University of Technology
    2017
    Abstract
    Piezoelectric materials are extensively applied for vibrational energy harvesting especially in micro-scale devices where other energy conversion mechanisms such as electromagnetic and electrostatic methods encounter fabrication limitations. A cantilevered piezoelectric bimorph beam with an attached proof (tip) mass for the sake of resonance frequency reduction is the most common structure in vibrational harvesters. According to the amplitude and frequency of applied excitations and physical parameters of the harvester, the system may be pushed into a nonlinear regime which arises from material or geometric nonlinearities. In this study nonlinear dynamics of a piezoelectric bimorph harvester... 

    Coupled electromechanical analysis of MEMS-based energy harvesters integrated with nonlinear power extraction circuits

    , Article Microsystem Technologies ; Volume 23, Issue 7 , 2017 , Pages 2403-2420 ; 09467076 (ISSN) Pasharavesh, A ; Ahmadian, M. T ; Zohoor, H ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    Application of piezoelectric materials in vibration energy harvesters is expanding rapidly, especially in MEMS-based devices, due to their uncomplicated fabrication processes and reasonable power generation potential. In addition to standard power extraction methods, nonlinear switched techniques with capability of generated power enhancement, are previously developed and extensively applied in energy harvesting using piezoelectric materials. In this article, vibratory behavior of bimorph resonant harvesters coupled to nonlinear circuits of energy harvesting including standard and switched techniques is investigated. An analytical approach employing some perturbation technique, is utilized... 

    Complex modal analysis and coupled electromechanical simulation of energy harvesting piezoelectric laminated beams

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; 2018 ; 09544062 (ISSN) Pasharavesh, A ; Ahmadian, M. T ; Zohoor, H ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    In this paper, coupled electromechanical behavior of a vibrational energy harvesting system composed of a unimorph piezoelectric laminated beam with a large attached tip mass is investigated. To achieve this goal, first the electromechanically coupled partial differential equations governing the lateral displacement and output voltage of the harvester are extracted through exploiting the Hamilton’s principle. Considering vibration damping due to mechanical to electrical energy conversion, a complex modal analysis is performed to extract the complex eigenfrequencies and eigenfunctions of the system. Furthermore, an exact analytical solution is presented for the system response to the harmonic... 

    On the energy extraction from large amplitude vibrations of MEMS-based piezoelectric harvesters

    , Article Acta Mechanica ; Volume 228, Issue 10 , 2017 , Pages 3445-3468 ; 00015970 (ISSN) Pasharavesh, A ; Ahmadian, M. T ; Zohoor, H ; Sharif University of Technology
    2017
    Abstract
    As sizes decrease, the advantages of application of piezoelectric materials for mechanical to electrical energy conversion become more obvious in comparison with electromagnetic and electrostatic techniques, according to uncomplicated fabrication processes of microscale piezoelectric harvesters together with their considerable amounts of generated power. Cantilevered silicon beams with surface bounded piezoelectric layers form the main structure of these MEMS-based harvesters. Lowering the resonance frequency down to the range of environmental vibration frequencies is one of the most significant challenges in MEMS harvesters which is usually attempted to be achieved by thinning the beam and... 

    Complex modal analysis and coupled electromechanical simulation of energy harvesting piezoelectric laminated beams

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 233, Issue 7 , 2019 , Pages 2526-2537 ; 09544062 (ISSN) Pasharavesh, A ; Ahmadian, M. T ; Zohoor, H ; Sharif University of Technology
    SAGE Publications Ltd  2019
    Abstract
    In this paper, coupled electromechanical behavior of a vibrational energy harvesting system composed of a unimorph piezoelectric laminated beam with a large attached tip mass is investigated. To achieve this goal, first the electromechanically coupled partial differential equations governing the lateral displacement and output voltage of the harvester are extracted through exploiting the Hamilton’s principle. Considering vibration damping due to mechanical to electrical energy conversion, a complex modal analysis is performed to extract the complex eigenfrequencies and eigenfunctions of the system. Furthermore, an exact analytical solution is presented for the system response to the harmonic... 

    Effect of microbeam electrical resistivity on vibration frequency shift of an electrostatically actuated microbeam

    , Article Proceedings of the ASME Design Engineering Technical Conference, 15 August 2010 through 18 August 2010 ; Volume 4 , 2010 , Pages 547-554 ; 9780791844120 (ISBN) Pasharavesh, A ; Ahmadian, M. T ; Alizadeh Vaghasloo, Y ; Sharif University of Technology
    2010
    Abstract
    Nonlinear vibration of a microbeam actuated by a suddenly applied voltage with considering the effect of voltage distribution on the beam due to electrical resistivity of beam is investigated. Homotopy perturbation method is implemented to solve the coupled nonlinear partial differential equations of motion. The vibration frequency variation and damping at various resistivities is studied. Considering resistivity, effect of applied voltage and beam length on the frequency shift and damping ratio is analyzed. Findings indicate there exists a jump in frequency shift and damping ratio at a critical resistivity. Variation of critical resistivity with respect to modulus of elasticity and beam... 

    Vibration and Dynamic Analysis of Electrostatically Aactuated Micro and Nano Beams Using Nonlocal Theory

    , M.Sc. Thesis Sharif University of Technology Pasharavesh, Abdolreza (Author) ; Ahmadiyan, Mohammad Taghi (Supervisor) ; Zohoor, Hassan (Supervisor)
    Abstract
    Micro and nano electromechanical systems technology has experienced lots of progress in recent years. These systems are widely used in sensors and actuators due to their small size low weight and low energy consumption. Electrostatically actuation is one of the simplest and most prevalent methods of actuation and sensing in these systems. Electrostatically actuated micro and nanobeams are used in many devices such as micro and nano switches, resonators, signal filters, tunable capacitors, pressure and mass sensors, etc. Experimental results and measurements have shown that classical theories contain error in prediction of static and dynamic ... 

    Nonlinear Analysis of MEMS-based Piezoelectric Vibrational Energy Harvesters

    , Ph.D. Dissertation Sharif University of Technology Pasharavesh, Abdolreza (Author) ; Ahmadian, Mohammad Taghi (Supervisor) ; Zohoor, Hassan (Supervisor)
    Abstract
    Fabrication of various microelectromechanical sensors and actuators with low levels of energy consumption on one hand and the recent advances of microelectronic circuits technology leading to vast reduction in size and power consumption of CMOS circuitry on the other hand, have proposed the idea of developing MEMS-based environmental energy harvesting devices to provide their required power. These energy harvesters are an appropriate alternative for former heavy batteries of limited lifetime and can be utilized as a sustainable energy source for small intelligent systems. In the present research, the behavior of MEMS piezoelectric vibrational energy harvesters in nonlinear regime considering... 

    Geometrical Optimization of Aluminum Alloy Wheels for High Fatigue and Impact Strength

    , M.Sc. Thesis Sharif University of Technology Shahbazian, Shara (Author) ; Khayyat, Ali Akbar (Supervisor) ; Pasharavesh, Abdolreza (Supervisor)
    Abstract
    After the rise of the automotive industry, aluminum wheels have superseded steel counterparts due to their numerous advantages. Foremost among these benefits is their reduced weight, leading to fuel savings and diminished environmental impact. Moreover, aluminum wheels offer enhanced aesthetics and greater strength in comparison to steel alternatives. This thesis focuses on the geometrical optimization of an aluminum wheel model conforming to the standards set by Iran's Department of Standards, aiming to achieve a higher strength-to-weight ratio. While prior research works have mainly focused on weight reduction while maintaining strength within approved standards, this thesis aims at the...