Loading...
Search for: nanoparticles
0.168 seconds

    Design and Construction of PCL Nanofiber Scaffold for Bladder Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Vakilian, Saeed (Author) ; Yaghmaei, Soheyla (Supervisor) ; Mashayekhan, Shohreh (Co-Advisor)
    Abstract
    In this project, a novel system of bioactive electrospun scaffold for bladder tissue engineering , has been investigated to control in vitro cell differentiation, and utilize in in vivo vascularization and tissue formation. This method doesn’t have custom bioactive scaffolds problems such as, protein instability, technical complexity and, difficulties in accurate kinetics prediction. First of all, protein loaded chitosan nanoparticles based on ionic gelation interaction between chitosan and Sodium tripolyphosphate were prepared. Maximum protein loading efficiency (80% for BSA & 99% for TGF-beta1) in chitosan nanoparticles was obtained at mean diameter of 51nm. Moreover polycaprolactone... 

    Structural Design Optimization and Dynamics Analysis of Non-Uniform Thickness Laminated Beam Reinforced with Nano-Particles

    , M.Sc. Thesis Sharif University of Technology Momeni, Saman (Author) ; Zabihollah, Abolghassem (Supervisor) ; Selk Ghafari, Ali (Co-Advisor)
    Abstract
    Non-uniform laminated beams are being used in many engineering applications as primary elements. Helicopter blades, wind turbine blades and robot arms are examples of applications of these structures, in which the high stiffness-to-weight ratio and the non-uniform geometry are of high importance. Changing the thickness in laminated structures is a big challenge in fabrication view as different tapering configurations may significantly alter the stiffness of the structure. Thus, increasing the stiffness and dynamics characteristics of tapered beams with simple configuration is of high importance. The present work aims to investigate the effect of adding nano particles in resin during the... 

    Experimental Investigation of the Impact of Nanoparticles on Efficiency of Surfactant Flooding to Heavy Oil in Fractured Reservoirs Using Micromodel Apparatus

    , M.Sc. Thesis Sharif University of Technology Javadi Far, Ali Akbar (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Ayatollahi, Shahab (Supervisor) ; Roosta Azad, Reza (Supervisor)
    Abstract
    Today, due to limited number of light oil reservoirs, enhanced recovery from heavy oil reservoirs is taken into consideration. During the early production from heavy oil reservoirs, due to high viscosity, only a small amount (about 5%) of the oil can be produced; also after water injection operation due to unfavorable mobility ratio of water and oil, sorely more than about 10% of the original oil can be produced. On the other hand, fractured reservoirs represent about 20% of the world's oil reserves, while over 60% of the world's remaining oil reserves are in fractured reservoirs. Water flooding process leaves very high amounts of oil as remaining oil in these reservoirs too. One of the... 

    Investigating Effects of Interphase on Mechanical Properties of Particulate Metal-Matrix Nanocomposites Using Surface Elasticity

    , M.Sc. Thesis Sharif University of Technology Ebrahimi Estahbanati, Parvin (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    Due to ignoring the effect of length scale and neglecting the details at nanosize, classical methods are not sufficiently accurate to determine the properties of nanostructured materials. More reliable results can be obtained, using surface elasticity theory. Lots of analytical, experimental and numerical investigations have been done on the effect of interphase on the mechanical properties of polymer nanocomposites whereas metal matrix nanocomposites are in the first stages of analytical and numerical researches and have attracted so much attention.
    The main objective of this research is to investigate the effects of interphase as well as coating, on the mechanical behavior of metal... 

    Selective Adsorption of Li+Ion on Lithium Adsorbents

    , M.Sc. Thesis Sharif University of Technology Hajipour, Hengameh (Author) ; Askari, Masoud (Supervisor)
    Abstract
    Interest in lithium sources has been increasing because of wide applications of the metal in high-energystorage lithium batteries and its compounds in otherfields.Lithium appears in lake, brines and several minerals such as spodumene, petallite, and lepidolite. Several methods such as ion exchange (adsorption), solvent extraction, and coprecipitation have been investigated for the extraction of lithium from seawater, brine, and geothermal water. The adsorption method is suitable for recovery of lithium from seawater because certain inorganicion-exchange materials show extremely high selectivity for lithium ions only.The objective of this study is to evaluate the applicability of nano... 

    Solution Combustion Synthesis of Spinel-type (Cu,Co) 3O4 Nanopowder

    , M.Sc. Thesis Sharif University of Technology Ghorbanzadeh, Milad (Author) ; Yoozbashizadeh, Hossein (Supervisor)
    Abstract
    In this study, nano-powders of copper-cobalt spinel (CuCo2O4) were fabricated by solution combustion synthesis (SCS) of Cu and Co nitrates with urea, glycine,acid citric and alanine. The method involved exothermic decomposition of viscous liquid nitrates and the fuel. Products which were synthesized by using this fuels contained less impurity constituents. Duo to low purity, other factors which have influence on synthesis process investigated and observed that pH have key role on process. X-ray diffraction (XRD) patterns gave crystal structure and the existing phases. Particle size distribution and morphology changes were studied by dynamic light scattering (DLS) and field emission scanning... 

    Synthesis of Magnesium Aluminate Spinel Nanoparticles Using Chemical Method and Investigation of the Effect of Zirconia on Spinel Composites Properties

    , M.Sc. Thesis Sharif University of Technology Maddahi, Vahid (Author) ; Nemati, Ali (Supervisor)
    Abstract
    In this research, a powder containing magnesium-aluminate spinel particles is prepared based on co-precipitation method and 5% , 10%, 15% and 20% zirconia-contained composites are produced as second phase from the synthesized powder. The raw materials used in the synthesis comprise hexa-hydrated magnesium nitrate, nona-hydrated aluminum nitrate, ammonium bicarbonate, 28% ammonium solution and distilled water. The properties of the powder is then investigated using STA, XRD and SEM tests. Also, XRD and SEM analyses as well as triple point flexural strength and Vickers hardness tests are carried out in order to investigate the effect of adding zirconia to the powders. The variations of the... 

    Synthesis of Platinum Nanoparticles and Study on its Application as a Catalyst and an Adsorbent of the Radioactive Elements

    , M.Sc. Thesis Sharif University of Technology Mehdizadeh, Sofia (Author) ; Outokesh, Mohammad (Supervisor) ; Ahmadi, Javad (Supervisor) ; Sadjadi, Sodeh (Co-Advisor)
    Abstract
    The present study was aimed at investigating the use of platinum and platinum nanoparticles stabilized on zeolite as catalyst for the reduction reaction of p-nitrotoluene as one of the dangerous pollutants. The adsorption properties of platinum based on zeolite have been studied for some heavy metals. Monodispersed platinum nanoparticles were synthesized through reduction of H2PtCl6 by ethanol in the presence of polyvinyl pyrrolidone (PVP) as a stabilizer, and then were immobilized on four types of zeolites. The study then focused on elaboration of the catalytic activity of the nano catalysts under different operational conditions. In order to investigate the catalytic properties, operating... 

    Experimental Study and Modelling of Ultrafine Particles Formation by Using the Supercritical Fluids

    , Ph.D. Dissertation Sharif University of Technology Karimi Sabet, Javad (Author) ; Gotbi, Cyrus (Supervisor) ; Khanchi, AliReza (Supervisor) ; Farhadpour, Farhad (Co-Advisor) ; Dorkoosh, Farid (Co-Advisor)
    Abstract
    In this research, we focused on demonstration of features and advantages of supercritical fluids technology to formation of fine particles (nano and micro scales) from bulk materials (solid) and synthesized metal oxides nanoparticles. Therefore, using two different fluids, carbon dioxide and water, and two completely different methods, the Rapid expansion of supercritical solution and supercritical hydrothermal, were used to produce fine particles of drug (acetaminophen) and nano metal oxide (zirconium dioxide and bismuth ferrite). The summary of this research are as follows:1. The solubility of acetaminophen in SuperCritical-Carbon Dioxide (SC-CO2) with and without menthol as a cosolvent... 

    Deposition of Ceramic Nanoparticles on Aluminum Sheet by Air Gun Spraying for ARB Processing of Nanocomposite Sheets

    , M.Sc. Thesis Sharif University of Technology Keramat, Ehsan (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Particle reinforced aluminum matrix composites have considerable attraction in automotive and aerospace industries due to their special properties as light weight, high ratio of strength/density, improved elastic modulus, low coefficient of thermal expansion and high wear and corrosion resistance. Among the production processes of metal matrix composites, accumulative roll bonding process has particular importance due to producing ultrafine grained composite sheets. However, uncontrolled and undesired agglomeration of particles is the main problem in producing these composites. In this research, the Al2O3 and SiC nanoparticles were electrostatically stabilized against agglomeration by... 

    Experimental and Modeling Study of Enhanced Oil Recovery Improvement during Nanosilica Particle Flooding to Oil Reservoirs

    , M.Sc. Thesis Sharif University of Technology Nejatinezhad, Atefe (Author) ; Vosoughi, Manuchehr (Supervisor) ; Ghazanfari, Mohammad Hassan (Supervisor) ; Masihi, Mohsen (Supervisor)
    Abstract
    Recent studies in nanotechnology field have shown this technology could solve many challenges and needs in oil and gas industry. As yet, many applications of nanoparticles in enhanced oil recovery have been reported. One of the most important applications is wettability alteration due to presence of nanoparticles in injecting fluid, which has recently been studied by several research groups. These studies indicate that, presence of nanoparticles in injecting water would improve oil recovery. However, there is no adequate information about the mechanisms affecting fluid flow in reservoir rock and its mathematical modeling.The aim of this project is to evaluate the effect of injection of... 

    Factors Affecting the Efficiency of Ferrite Process for Removal of Heavy Metals (Case study of Chromium and Nickel)

    , M.Sc. Thesis Sharif University of Technology Abdolshahinejad, Sara (Author) ; Borgheei, Mahdi (Supervisor)
    Abstract
    Heavy metals, present in many industrial wastewaters, are considered as major pollutants of environment. Various methods to removal heavy metals effectively from effluents have been used in industry, yet more efficient and economical methods are required. Magnetic iron nanoparticles are known for their superior adsorption, ion exchange and electro-static forces characteristics.The aim of this study was to evaluate the efficiency of magnetic nanoparticles for removal of hexavalent chromium (VI) and Divalent nickel from wastewater and the parameters that influence the removal.The magnetite nanoparticles were prepared by co-precipitation method where produced Fe3O4 nanoparticle’s average size... 

    Effects of Ce-Co Substitution on Magnetic and Dielectric Properties of Barium Hexaferrite Nanoparticles Synthetized by Sol-Gel Auto-Combustion Route

    , M.Sc. Thesis Sharif University of Technology Lellahgani, Zahra (Author) ; Nemati, Ali (Supervisor)
    Abstract
    In this study, the substituted barium hexaferrite nanoparticles with general formula Ba1-xCexFe12-xCoxO19 (x = 0, 0.1, 0.2 and 0.3) were prepared by the sol-gel auto combustion method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), Mossbauer spectroscopy (MS), vibrating sample magnetometer (VSM) and performing network analyzer (PNA) were employed to investigation of structural, magnetic, dielectric and microwave properties of barium hexaferrite nanoparticles. Moreover, differential scanning calorimetry (DSC) were performed to observe the formation mechanism of barium hexaferrite. DSC studies showed that barium... 

    Experimental Investigation of Micro-Bubble Based Drilling Nano Fluids on Formation Damage Reduction in Heterogenous Porous Media

    , M.Sc. Thesis Sharif University of Technology Tabzar, Amir (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Rashtchian, Davood (Supervisor)
    Abstract
    Drilling of low pressure layers is one of the major problems in petroleum industry, in which requires a lightweight drilling fluid for drilling of these layers. Use of lightweight Colloidal Gas Aphron (CGA) leads to loss reduction of drilling fluid, decreases formation damage and finally, well stimulation costs will be reduced. Use of nanoparticles can improve the aphron drilling fluid performance. But there is little information in the literature about the role of natural surfactant in the presence of nanoparticles on the CGA based fluid properties. Especially, micro bubbles behavior in the presence of nanoparticles in pore scale is less considered. This study consists of two parts, in the... 

    Theoretical and Experimental Investigation of Nanoparticle Formation Via Microemulsion Method

    , Ph.D. Dissertation Sharif University of Technology Vafa, Ehsan (Author) ; Shahrokhi, Mohammad (Supervisor) ; Molaei Dehkordi, Asghar (Supervisor)
    Abstract
    In this work, nanoparticle production via microemulsion method has been investigated from theoretical and experimental points of view. Population balance approach has been used to model nanoparticle formation in an inverse microemulsion system. The study of nanoparticle formation in the inverse microemulsion system of Marlipal O13/40-cyclohexane-water reveals that in low reactants concentrations, the coagulation phenomenon has an important effect on the formation of particles. In this regard, the population balance equations has been developed to consider the coagulation phenomenon in the inverse microemulsion system. The kernel of coagulation has been calculated based on attractive and... 

    The Effect of Protein Corona on Doxorubicin Release from the Magnetic Mesoporous Silica Nanoparticles and the Effect of Polyethylene Glycol Coating on drug Delivery System

    , M.Sc. Thesis Sharif University of Technology Mahmoudi, Negar (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    The nanoparticles have been widely used in the field of physics, chemistry, electronics and mechanics because of their high surface area. One of their most important applications is in drug delivery systems as smart drug nanocarrier. Magnetic nanoparticles (including Fe2O3, Fe3O4) are the good candidates for this purpose. It is clear that, upon to entrance of nanoparticle into biological media (such as plasma), the surface of nanoparticles were covered by protein layers (protein corona). This layer is very stable and created new surface on the nanoparticles. The protein corona layer intracts with cellular receptors and determines the fate of nanoparticles. Protein corona covers the targeting... 

    Study of Mechanism of Formation of Metal Oxide Nanoparticles in Supercritical Water Medium

    , M.Sc. Thesis Sharif University of Technology Akhlaghpasand, Hamze (Author) ; Outokesh, Mohammad (Supervisor) ; Ahmadi, Javad (Co-Advisor)
    Abstract
    One of the most convenient methods for the synthesis of metal oxide nanoparticles, inorganic ceramic materials and catalysts is supercritical hydrothermal method. In its pure form or mixed metal oxide nanoparticles have potential applications are wide. An important aspect of functional metal oxides of uranium dioxide as the selective catalyst for the conversion of methane to methanol and chlorinated organic matter decomposition is used. The main issue that led to the definition of this project was that nanoparticles synthesized with supercritical hydrothermal conditions influenced by change in the temperature. Temperature also affects the particle size and the conversion efficiency. This... 

    Simulation of Blood Flow Subjected to Magnetic Field

    , M.Sc. Thesis Sharif University of Technology Aalizadeh, Farhad (Author) ; Moosavi, Ali (Supervisor) ; Shafie, Mohammad Behshad (Supervisor)
    Abstract
    Considering the fact that there is a blood flow inside the vessels it is possible that blood flow is always associated with fouling and this may decrease the blood flow when a blood vessel is injured, the cells of your blood bond together to form a blood clot. The blood clot helps you stop bleeding. Blood clots are made of a combination of blood cells, platelets (small sticky cells that speed up the clot-making process), and fibrin (protein that forms a thread-like mesh to trap cells). Doctors call this kind of blood clot a “thrombus.” We study the effects of different parameters on the deposition of Nanoparticles on the surface of a bump in the blood vessels by the magnetic field. The... 

    The Synthesis of Sialon Nano Particles by Sol- Gel Procedure and Investigation of Properties of its Erosion

    , M.Sc. Thesis Sharif University of Technology Fathi, Hamed (Author) ; Nemati, Ali (Supervisor) ; Halali, Mohammad (Supervisor)
    Abstract
    Sialons are materials which crystallize in four elements system (Si-Al-O-N). These materials have been widely observed by researchers because of their suitable properties like: high toughness and strength in high temperatures, high resistance to corrosion and stability in thermal shock. Because of these properties,Sialons are anti erosion materials. In this research, by controling the situations, mullite has been synthesized by sol-gel procedure. Then the powder has been ground by ballmill for 12 hours and by spex for 30 minutes. Then the produced powder was mixed with distinct amount of graphite and nano silica and was nitrided in the furnace at 1500 ̊C and was heated for 5 hours. Also... 

    Preparation of Hemodialysis Membrane on the Basis of Polysulfone

    , M.Sc. Thesis Sharif University of Technology Sajjadi, Morteza (Author) ; Moosavi, Ali (Supervisor) ; Abd Khodaei, Mohammad Jafar (Supervisor)
    Abstract
    In Hemodialysis, membrane dialyser and commonly hollow fibers are used to treat patients who suffer from end stage renal failure. When blood flows into membrane, it loses uremic toxins such as urea and creatinine. On the other hand, some of the vital proteins of blood pass through the membrane or they are adsorbed on the membrane surface. The more hydrophilicity of the membrane, the less adsorption of proteins is. In this study, to achieve high hydrophilicity and low adsorption of proteins on the polysulfone membrane surface, the presence of hydrophilic nano-particles SBA-15 in membrane composition is investigated. The nano-particles with mass percentages 0.25%, 0.5 % and 1 % to one mass of...