Loading...
Search for:
microchannel
0.12 seconds
Two Phase Flow in Micro-channel with Liquid Injection From Wall
, M.Sc. Thesis Sharif University of Technology ; Nouri Borujerdi, Ali (Supervisor)
Abstract
In this thesis, two-phase flow modeling in two-dimensional micro channel with liquid injection from wall is studied. Two models as "separated flow model" and "two-phase mixture flow" is developed. The separated flow model considers gas and liquid flow in separated films of flow with an interface between the phases. The two-phase mixture flow considers equivalent fluid mixture from gas and liquid with local modification in density and viscosity. Governing equations include continuity and momentum solved with control volume method. SIMPLE algorithm's been used to pressure-velocity linked equations. Velocity and pressure profiles plotted for mentioned models at a given situations. By comparing...
Simulating Flow over Nanoparticles through Microchannels Using Lattice Boltzmann Method
, M.Sc. Thesis Sharif University of Technology ; Darbandi, Masoud (Supervisor)
Abstract
Novel manufacturing technologies in micro scales, such as micro machining, guide us through constructing micro scale systems known as MEMS. These systems have a wide range of applications, from fabrication of electrostatic, magnetic, pneumatic sensors and actuators to micro mechanical gears and motors. Also, MEMS applications involve the manipulation of one or more fluids, known as microfluids. Simulation of flow through microchannels over nano particles has important applications in solid particles transport. In this flow, the rarefaction phenomenon will affect the flow behavior and its subsequent impacts such as aerodynamic drag forces. In this work, we use the Lattice Boltzmann method...
Developing a Parallel DSMC Algorithm for Simulating Flow in Micro-Nano Propulsion Systems
, M.Sc. Thesis Sharif University of Technology ; Darbandi, Masoud (Supervisor)
Abstract
With the rapid development of mico-nano propulsion systems in micro-spacecrafts and micro-sattelites, precise investigation of flow field in these devices has become necessary. Micro propulsion systems usually have a thrust in order of mili Newton, and they can be used for maneuvers of spacecrafts with mass of less than 10 kg. Micro propulsion systems are usually classified according to their thrust generation mechanism to different classes like cold gas, and chemical propulsion systems. Cold gas micro propulsion systems obtain their energy from thermodynamic expansion of gas and not by combustion. If the flow fiel dimensionare comparable to mean free path, rarefaction effects are observed...
Experimental Study on Two-Phase Flow Characteristics in Micro-Channels
, M.Sc. Thesis Sharif University of Technology ; Nouri, Ali (Supervisor)
Abstract
The present study provids an experimental investigation on two-pase flow characteristics in microchannels. Experiment were conducted with a mixture of air and water in horizontal circular pyrex channel with 400µm inner diameter. The pressure drop and flow rates of the liquid and gas were measured using new method and images of the flow patterns recorded by high shutter speed camera. The gas and liquid superficial velocity ranges were 0.025-12.5m/s and 0.016-3.6m/s, respectively. The flow pattern map is developed from the observed flow patterns based on phases superficial velocity as wel as We numbers of liquid and gas phases. The flow pattern map is compared with those of larger channels....
Numerical Simulation of Turbulent Flow Heat Transfer in the Entrance Region of Microchannels
, M.Sc. Thesis Sharif University of Technology ; Nouri Borujerdi, Ali (Supervisor)
Abstract
In this thesis the steady state convective heat transfer for turbulent, two-dimensional, incompressible gas flow in a circular microchannel under slip flow and temperature jump conditions is numerically investigated by means of finite volume scheme. The low Reynolds number k-ε turbulence model is employed using a new boundary condition for turbulent kinetic energy at solid surface. To calculate variables at control volume surfaces in the axial direction upwind differencing scheme and in the radial direction central differencing scheme are used. Rhie-Chow interpolation technique is used to prevent pressure field oscillations. The set of discrete equations are solved using SIMPLE Algorithm. In...
Numerical Modeling of Electroosmotic Flow of Viscoelastic Fluids in Hydrophobic Microducts
, M.Sc. Thesis Sharif University of Technology ; Saeedi, Mohammad Hassan (Supervisor) ; Kazemzadeh Hannani, Siamak (Co-Advisor)
Abstract
The integrated development of small-scale electronic and mechanical systems has drawn attention, since they lead to increase in speed and decrease in volume of industry dimensions in the manufacturing sector. That is why microelectromechanical systems are highly considered. MEMS are widely used in Microfluidic systems that can be used in medicine, biology and drug injection. Due to the fact that consistent fluid velocity is necessary in biological applications, electroosmotic flow is more important than ever. To investigate the behavior of biofluids, Newtonian models cannot be used and it is required to use models that predict the behavior of these fluids accurately. In this research...
Dynamics and Heat transfer of Two-phase Non-Newtonian Fluids in Superhydrophobic Channels
, M.Sc. Thesis Sharif University of Technology ; Moosavi, Ali (Supervisor)
Abstract
When the fluid passes through the microchannel, some energy is lost due to drag force and pressure drop. One of the methods used in the last few decades to optimize energy consumption is creating superhydrophobic surfaces in microchannels. These surfaces, with their features such as increasing the contact angle and reducing the contact angle hysteresis, can reduce energy loss, which is due to the presence of unevenness on the surface, and by trapping air and creating a two-phase flow, they reduce the drag force. On the other hand, the air trapped inside these irregularities will also affect the heat transfer of the passing fluid in the microchannel, which by creating resistance in the...
Production of Liquid Metal Micro-droplets and Electrical Control of their Size and Rate of Formation
, M.Sc. Thesis Sharif University of Technology ; Kebriaee, Azadeh (Supervisor)
Abstract
The use of liquid metal droplets due to their high electrical and thermal conductivity are used in various industries today. One of the methods of producing these micro-droplets is the flow focusing method, which is widely used to produce integrated and monodispersed droplets. Liquid metals have high surface tension and these micro-droplets are formed only if there is sufficient shear force between the liquid metal and a continuous fluid phase. In the past, they used several different methods such as pressure fluctuations and changes in continuous phase flow rate to control the shear force and produced polymer, gas, etc. micro-droplets.In this research, use the electric potential to control...
Simulation of Compressible Rarefied Gas Flow using High-Order WENO Finite-difference Lattice Boltzmann Method
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
The goal of the present study is to simulate the compressible rarefied gas flow by using a high-order finite-difference lattice Boltzmann method. Here, a weighted essentially non-oscillatory lattice Boltzmann method (WENO-LBM) is applied for the solution of the compressible form of the LB equation with the Kataoka-Tsutahara model. The solution procedure is based on the discretization of the convection terms of the LB equation using the fifth-order finite-difference WENO scheme and the temporal term using the third-order explicit total variation diminishing Runge-Kutta scheme for both the continuum and rarefied gas flows. The treatment of implementing the no-slip and slip boundary conditions...
Simulation of Flow Drag Reduction through Air Injection from the Porous Wall
, M.Sc. Thesis Sharif University of Technology ; Moosavi, Ali (Supervisor) ; Sadrhosseini, Hani (Supervisor)
Abstract
The effect of using backpressure of air injection in a microchannel on internal flow pressure drop were investigated in this study. Multiphase flows are commonly encountered in gas and oil industries. Flow fields in production operations are often complex and include multiphase flows of gas and liquid. Previously, because of their complex nature, these flow patterns have been mostly investigated only experimentally and empirical correlations based on the experimental data. From another point of view, it is almost impossible to experimentally realize all the flow conditions for each of the flow patterns. Nowadays computer facilities provide the tool to construct and use large-scale...
Drag Reduction Using Geometrically Structured Surfaces for Non-newtonian Multi-phase Fluids
, M.Sc. Thesis Sharif University of Technology ; Moosavi, Ali (Supervisor)
Abstract
With the advancement of the industry, microscale devices use due to its unique characteristics. On the other hand, it is essential to find ways to reduce drag inside microchannels because of The importance of energy. One of the methods is to optimize the contact surface using structured geometric surfaces. These hydrophobic surfaces reduce drag by trapping the air in roughness and creating a two-phase flow. The purpose of this project is to reduce the drag within the microchannel using structured geometric surfaces for non-Newtonian and multiphase flows. In most previous studies, with simplification, Newtonian and two-phase flows have been investigated. While most industrial fluids show...
Analysis of Heat Transfer and Fluid Flow in Partial Porous Microchannel
, M.Sc. Thesis Sharif University of Technology ; Nouri Brorujerdi, Ali (Supervisor)
Abstract
In this study, heat transfer and fluid flow inside a rectangular microchannel with partial porous media is simulated numerically. Darcy-Brinkman-Forchheimer equations are used to model the porous media. The effect of height of porous media, permeability (Darcy number), porosity and inlet velocity (Reynolds number) on Hydrodynamic and heat transfer performance are examined. At different values of height of porous media 0.2, 0.4, 0.6, 0.8, and 1 mm the Nusselt number of microchannel are 1.72, 1.78, 1.86, 1.94, and 2.02 compared to the microchannel without porous media. And the porous drop are 1.09, 1.2, 1.49, 1.76, and 2.15 compared to the microchannel without porous media. And FOM are 1.78,...
Numerical Investigation of Surface Wettability Effect on Liquid-Liquid Two-Phase Flow Heat Transfer in Microchannels
, Ph.D. Dissertation Sharif University of Technology ; Kazemzadeh Hannani, Siamak (Supervisor) ; Farhanieh, Bijan (Co-Supervisor)
Abstract
It is aimed in this study to numerically investigate the effect of contact angle on the heat transfer coefficient in oil-water two-phase flow. For this purpose, the finite element method (FEM) is used to solve the unsteady Navier-Stokes and energy equations. The level set method is also used to capture the interface between the phases. In the first part of the study, two-phase flow of the water and calibration oil is considered in a T-junction geometry at contact angles of 5°, 40°, and 75°. It is observed that the flow patterns formed in the microchannel depend on the initial flow condition which results in the hysteresis phenomenon. Investigating the effect of wall contact angle on the...