Loading...
Search for: akhavan--o
0.112 seconds

    Hydrothermally synthesized CuO powders for photocatalytic inactivation of bacteria

    , Article Acta Physica Polonica A ; Volume 127, Issue 6 , 2015 , Pages 1727-1731 ; 05874246 (ISSN) Azimirad, R ; Safa, S ; Akhavan, O ; Sharif University of Technology
    2015
    Abstract
    Various morphologies of monoclinic CuO powders were synthesized by hydrothermal treatment of copper nitrate, copper acetate or copper sulfate. The synthesized samples were characterized by scanning electron microscopy, X-ray diffractometry, the Fourier transform infrared spectroscopy, and diffuse reflectance spectrophotometry. Antibacterial activity of the samples was studied against Escherichia coli bacteria in dark and under visible light irradiation. Although the different precursors yielded the same band gap energies (≈1.6 eV) for the synthesized CuO samples, they resulted in various morphologies (hierarchy of stabilized micro/nanostructures), specific surface areas, concentrations of... 

    Photocatalytic activity of mesoporous microbricks of ZnO nanoparticles prepared by the thermal decomposition of bis(2-aminonicotinato) zinc (II)

    , Article Cuihua Xuebao/Chinese Journal of Catalysis ; Volume 36, Issue 5 , May , 2015 , Pages 742-749 ; 02539837 (ISSN) Bijanzad, K ; Tadjarodi, A ; Akhavan, O ; Sharif University of Technology
    Science Press  2015
    Abstract
    Hollow microblocks of [Zn(anic)2], as a novel coordination compound, were synthesized using 2-aminonicotinic acid (Hanic) and zinc (II) nitrate tetrahydrate. The chemical composition of the zinc complex, ZnC12H10N4O4, was determined by Fourier transform infrared (FTIR) spectroscopy and elemental analysis. The synthesized zinc complex was used as a precursor to produce ZnO nanostructures by calcination at 550 °C for 4 h. Morphological studies by scanning electron microscopy and transmission electron microscopy revealed the formation of porous microbricks of ZnO nanoparticles. N2 adsorption-desorption analysis showed that the... 

    Nanoscale graphene oxide sheets as highly efficient carbocatalysts in green oxidation of benzylic alcohols and aromatic aldehydes

    , Article Cuihua Xuebao/Chinese Journal of Catalysis ; Volume 38, Issue 4 , 2017 , Pages 745-757 ; 02539837 (ISSN) Sedrpoushan, A ; Heidari, M ; Akhavan, O ; Sharif University of Technology
    Science Press  2017
    Abstract
    Nanoscale graphene oxide (NGO) sheets were synthesized and used as carbocatalysts for effective oxidation of benzylic alcohols and aromatic aldehydes. For oxidation of alcohols in the presence of H2O2 at 80 °C, the NGOs (20% mass fraction) as carbocatalysts showed selectivity toward aldehyde. The rate and yield of this reaction strongly depended on the nature of substituents on the alcohol. For 4-nitrobenzyl alcohol, <10% of it was converted into the corresponding carboxylic acid after 24 h. By contrast, 4-methoxybenzyl alcohol and diphenylmethanol were completely converted into the corresponding carboxylic acid and ketone after only 9 and 3 h, respectively. The conversion rates for... 

    Graphene-based nanomaterials in fighting the most challenging viruses and immunogenic disorders

    , Article ACS Biomaterials Science and Engineering ; Volume 8, Issue 1 , 2022 , Pages 54-81 ; 23739878 (ISSN) Ebrahimi, M ; Asadi, M ; Akhavan, O ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Viral diseases have long been among the biggest challenges for healthcare systems around the world. The recent Coronavirus Disease 2019 (COVID-19) pandemic is an example of how complicated the situation can get if we are not prepared to combat a viral outbreak in time, which brings up the need for quick and affordable biosensing platforms and vast knowledge of potential antiviral effects and drug/gene delivery opportunities. The same challenges have also existed for nonviral immunogenic disorders. Nanomedicine is considered a novel candidate for effectively overcoming these worldwide challenges. Among the versatile nanomaterials commonly used in biomedical applications, graphene has recently... 

    Strain effects on optical properties of linearly polarized resonant modes in the presence of monolayer graphene

    , Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 277 , 2022 ; 09215107 (ISSN) Alidoust Ghatar, A ; Jahani, D ; Akhavan, O ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Recently, huge attention has been drawn to improve optical sensing devices based on photonic resonators in the presence of graphene. In this paper, based on the transfer matrix approach and TE polarization of the incident electromagnetic waves, we numerically evaluate the transmission and reflection spectra for one-dimensional photonic resonators and surface plasmon resonances with strained graphene, respectively. We proved that a relatively small strain field in graphene can modulate linearly polarized resonant modes within the photonic bandgap of the defective crystal. Moreover, we study the strain effects on the surface plasmon resonances created by the evanescent wave technique at the... 

    Optical properties and surface morphology of evaporated (WO 3)1-x-(Fe2O3)x thin films

    , Article Thin Solid Films ; Volume 484, Issue 1-2 , 2005 , Pages 124-131 ; 00406090 (ISSN) Moshfegh, A. Z ; Azimirad, R ; Akhavan, O ; Sharif University of Technology
    2005
    Abstract
    Thin films of (WO3)1 - x-(Fe2O 3)x composition were deposited by thermal evaporation on glass substrates and then all samples were annealed at 400 °C in air. Optical properties such as transmittance, reflectance, and optical bandgap energy of the "as deposited" and the annealed films were studied using ultraviolet-visible spectrophotometry. It was shown that the annealing process did not substantially change the optical transmittance and reflectance of all the films except the films having x = 0.75. By increasing Fe2O 3 content in the films from x = 0 to x = 0.75, optical bandgap energy decreased from 3.4 to about 1.3 eV and from 3.1 to 2.1 eV for the "as deposited" and the annealed samples,... 

    Graphene oxide sheets involved in vertically aligned zinc oxide nanowires for visible light photoinactivation of bacteria

    , Article Journal of Alloys and Compounds ; Vol. 612 , 2014 , pp. 380-385 ; ISSN: 09258388 Nourmohammadi, A ; Rahighi, R ; Akhavan, O ; Moshfegh, A ; Sharif University of Technology
    2014
    Abstract
    Vertically aligned ZnO nanowires (NWs) hybridized with reduced graphene oxide sheets (rGO) were applied in efficient visible light photoinactivation of bacteria. To incorporate graphene oxide (GO) sheets within the NWs two different methods of drop-casting and electrophoretic deposition (EPD) were utilized. The EPD method yielded effective penetration of the positively charged GO sheets into the NWs to form a spider net-like structure, whereas the drop-casting method resulted in only a surface coverage of the GO sheets on top of the NWs. The electrical connection between the EPD-incorporated sheets and the NWs was checked by monitoring the electron transfer from UV-assisted photoexcited ZnO... 

    Visible light photoinactivation of bacteria by tungsten oxide nanostructures formed on a tungsten foil

    , Article Applied Surface Science ; Volume 338 , May , 2015 , Pages 55-60 ; 01694332 (ISSN) Ghasempour, F ; Azimirad, R ; Amini, A ; Akhavan, O ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Antibacterial activity of tungsten oxide nanorods/microrods were studied against Escherichia coli bacteria under visible light irradiation and in dark. A two-step annealing process at temperatures up to 390 °C and 400-800 °C was applied to synthesize the tungsten oxide nanorods/microrods on tungsten foils using KOH as a catalyst. Annealing the foils at 400 °C in the presence of catalyst resulted in formation of tungsten oxide nanorods (with diameters of 50-90 nm and crystalline phase of WO3) on surface of tungsten foils. By increasing the annealing temperature up to 800 °C, tungsten oxide microrods with K2W6O19 crystalline phase were formed on the foils. The WO3 nanorods showed a strong... 

    Pressure-engineered electrophoretic deposition for gentamicin loading within osteoblast-specific cellulose nanofiber scaffolds

    , Article Materials Chemistry and Physics ; Volume 272 , 2021 ; 02540584 (ISSN) Rahighi, R ; Panahi, M ; Akhavan, O ; Mansoorianfar, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Multi-component nanocomposite thin films (composed of cellulose nanofiber (CNF), alginate, bioglass nanoparticles (BG NPs) and gentamicin) were prepared by using cathodic electrophoretic deposition (EPD) under different isostatic pressures of 10−2 mbar (LP), atmospheric (AP), and 5 bar (HP). According to thermal gravity analysis, larger amounts of CNF and alginate could be deposited on the surface at the AP condition in comparison with the LP and HP conditions. On the other hand, higher amounts of the BG NPs could be deposited at the LP condition as compared to the other conditions. The drug (gentamicin) loading/releasing of the samples prepared at the HP condition was found to be higher... 

    Silver and gold nanoparticles for antimicrobial purposes against multi-drug resistance bacteria

    , Article Materials ; Volume 15, Issue 5 , 2022 ; 19961944 (ISSN) Rabiee, N ; Ahmadi, S ; Akhavan, O ; Luque, R ; Sharif University of Technology
    MDPI  2022
    Abstract
    Several pieces of research have been done on transition metal nanoparticles and their nanocomplexes as research on their physical and chemical properties and their relationship to biological features are of great importance. Among all their biological properties, the antibacterial and antimicrobial are especially important due to their high use for human needs. In this article, we will discuss the different synthesis and modification methods of silver (Ag) and gold (Au) nanoparticles and their physicochemical properties. We will also review some state-of-art studies and find the best relationship between the nanoparticles’ physicochemical properties and potential antimicrobial activity. The... 

    The growth of CoSi2 thin film in Co/W/Si(100) multilayer structures

    , Article Solid State Communications ; Volume 128, Issue 6-7 , 2003 , Pages 239-244 ; 00381098 (ISSN) Moshfegh, A. Z ; Hashemifar, S. J ; Akhavan, O ; Sharif University of Technology
    2003
    Abstract
    The growth of a CoSi2 thin film has been studied for the Co/W/Si(100) system. The Co film with a thickness of about 30 nm was grown over 12 nm sputtered W interlayer using the evaporation technique. The deposited multilayer structure was annealed in an N2 (80%)+H2 (20%) environment in a temperature range from 400 to 1000 °C for 60 min. The samples were characterized by X-ray diffraction (XRD), four point probe sheet resistance (RS) measurement and scanning electron microscopy (SEM). Using the deposited Co/Si(100) system as a reference point, a CoSi2 layer was formed at 800 °C with undesirable crystalline structure and the RS value of about 1.6Ω/□. Instead, for the Co/W/Si(100) system, it has... 

    Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation [electronic resource]

    , Article Journal of Applied Surface Science ; 15 May 2014, Volume 301, Pages 456–462 Mazaheri, M ; Akhavan, O ; Simchi, A. (Abdolreza) ; Sharif University of Technology
    Abstract
    Graphene oxide (GO)–chitosan composite layers with stacked layer structures were synthesized using chemically exfoliated GO sheets (with lateral dimensions of ∼1 μm and thickness of ∼1 nm), and applied as antibacterial and flexible nanostructured templates for stem cell proliferation. By increasing the GO content from zero to 6 wt%, the strength and elastic modulus of the layers increased ∼80% and 45%, respectively. Similar to the chitosan layer, the GO–chitosan composite layers showed significant antibacterial activity (>77% inactivation after only 3 h) against Staphylococcus aureus bacteria. Surface density of the actin cytoskeleton fibers of human mesenchymal stem cells (hMSCs) cultured... 

    Improved electrochromical properties of sol-gel WO3 thin films by doping gold nanocrystals

    , Article Thin Solid Films ; Volume 518, Issue 8 , 2010 , Pages 2250-2257 ; 00406090 (ISSN) Naseri, N ; Azimirad, R ; Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    2010
    Abstract
    In this investigation, the effect of gold nanocrystals on the electrochromical properties of sol-gel Au doped WO3 thin films has been studied. The Au-WO3 thin films were dip-coated on both glass and indium tin oxide coated conducting glass substrates with various gold concentrations of 0, 3.2 and 6.4 mol%. Optical properties of the samples were studied by UV-visible spectrophotometry in a range of 300-1100 nm. The optical density spectra of the films showed the formation of gold nanoparticles in the films. The optical bandgap energy of Au-WO3 films decreased with increasing the Au concentration. Crystalline structure of the doped films was investigated by X-ray diffractometry, which... 

    Microwave-assisted synthesis of bismuth oxybromochloride nanoflakes for visible light photodegradation of pollutants

    , Article Physica B: Condensed Matter ; Volume 475 , October , 2015 , Pages 14-20 ; 09214526 (ISSN) Bijanzad, K ; Tadjarodi, A ; Moghaddasi Khiavi, M ; Akhavan, O ; Sharif University of Technology
    Elsevier  2015
    Abstract
    BiOBrxCl1-x (0xCl1-x. The UV-visible diffuse reflectance and photoluminescence (PL) spectroscopies revealed the indirect band gap of ∼2.82 eV for the bismuth oxybromochloride nanoflakes. Visible light-assisted photocatalytic studies showed that the degradation efficiency of the as-prepared BiOBrxCl1-x for (100 mL of 10 mg L-1)... 

    Solid state preparation and photocatalytic activity of bismuth oxybromide nanoplates

    , Article Research on Chemical Intermediates ; Volume 42, Issue 3 , 2016 , Pages 2429-2447 ; 09226168 (ISSN) Bijanzad, K ; Tadjarodi, A ; Akhavan, O ; Moghaddasi Khiavi, M ; Sharif University of Technology
    Springer Netherlands  2016
    Abstract
    A mechanochemical method was applied to prepare bismuth oxybromide (BiOBr) nanoplates using bismuth nitrate pentahydrate and potassium bromide for 15 (A15), 30 (A30) and 60 (A60) minutes. Scanning electron microscopy studies showed that all the products were comprised of nanoplates. Aggregated nanoplates along with microblocks were observed for A15 and A30 and the entire morphology was not homogenous. The morphology of A60 was uniform and consisted of thin and isolated nanoplates. Evaluation of the X-ray diffraction patterns showed that the purity and crystallinity of the products improved by increasing the milling time. The energy dispersive X-ray analysis confirmed the high purity of the... 

    Persistent superhydrophilicity of sol-gel derived nanoporous silica thin films

    , Article Journal of Physics D: Applied Physics ; Volume 42, Issue 2 , 2009 ; 00223727 (ISSN) Ganjoo, S ; Azimirad, R ; Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    2009
    Abstract
    In this investigation, sol-gel synthesized nanoporous silica thin films, annealed at different temperatures, with long time superhydrophilic property have been studied. Two kinds of sol-gel silica thin films were fabricated by dip-coating of glass substrates in two different solutions; with low and high water. The transparent coated films were dried at 100 °C and then annealed in a temperature range of 200-500 °C. The average water contact angle of the silica films prepared with low water content and annealed at 300 °C measured about 5° for a long time (6 months) without any UV irradiation. Instead, adding water into the sol resulted in silica films with an average water contact angle... 

    A comparatiwe study of heat-treated Ag: SiO2nanocomposites synthesized by cosputtering and sol-gel methods

    , Article Surface and Interface Analysis ; Volume 41, Issue 3 , 2009 , Pages 157-163 ; 01422421 (ISSN) Sangpoyr, P ; Babapoyr, A ; Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    2009
    Abstract
    In this work, we compared formation and properties of heat-treated Ag nanoparticles in silica matrix synthesized by RF- reactive magnetron cosputtering and sol-gel methods separately. The sol-gel and sputtered films were annealed at different temperatures in air and in a reduced environment, respectively. The optical UV-visible Spectrophotometry have shown that the absorption peak appears at 456 and 400 nm wavelength indicating formation of silver nanoparticles in SiO2 matrix for both the sol -gel and sputtering methods at 100 and 800 °C, respectively. XPS measurements showed that the metallic Ag0 nanoparticles can be obtained from both the techniques at these temperatures. According to XPS... 

    ZnO nanowires from nanopillars: influence of growth time

    , Article Current Nanoscience ; Volume 5, Issue 4 , 2009 , Pages 479-484 ; 15734137 (ISSN) Sangpour, P ; Roozbehi, M ; Akhavan, O ; Moshfegh, A. R ; Sharif University of Technology
    2009
    Abstract
    A double-tube vapor phase transport system has been used to grow ZnO nanostructures. Nanopillars, nanorods and nanowires of zinc oxide were synthesized on Au nanoparticle catalyst depending on source-substrate distance and temperature gradient in the quartz tube. In addition, influence of growth time and substrate temperature on the morphology of the nanorods and nanowires were also investigated. The scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were employed to further understand the nanostructures growth mechanism on various temperatures and growth time steps. Longer length (>4μm) with hexagonal-cross-sectional nanowires, in [002]... 

    The effect of nanocrystalline tungsten oxide concentration on surface properties of dip-coated hydrophilic WO3-SiO2 thin films

    , Article Journal of Physics D: Applied Physics ; Volume 40, Issue 7 , 2007 , Pages 2089-2095 ; 00223727 (ISSN) Naseri, N ; Azimirad, R ; Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    2007
    Abstract
    WO3-SiO2 compound thin films were deposited on glass substrates using the sol-gel method, and then all the samples were dried at 100 °C and annealed at 400 °C in air. The effect of WO3 concentration on the hydrophilicity of WO3-SiO2 compound films was studied for the first time and it was shown that the films containing 85 mol% of the concentration possessed a superhydrophilic surface without UV or visible irradiation. Optical properties of the films such as transmittance, reflectance and bandgap energy were investigated using a UV-visible spectrophotometer. According to atomic force microscopy, the surface ratio was maximized in 85 mol% concentration of WO3 similar to hydrophilicity.... 

    Hydrophilicity variation of WO3 thin films with annealing temperature

    , Article Journal of Physics D: Applied Physics ; Volume 40, Issue 4 , 2007 , Pages 1134-1137 ; 00223727 (ISSN) Azimirad, R ; Naseri, N ; Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    2007
    Abstract
    The influence of annealing temperature on the hydrophilic property of WO3 thin films deposited by thermal evaporation and sol-gel dip-coating methods was studied and compared for the first time. The thermal evaporated WO3 thin films annealed at 400 °C showed a nearly super-hydrophilic property without UV and visible illumination. By analysing the O(1s) core level peak of XPS spectra, the amount of oxygen contributed at various bonds (including O2-, OH- and H2O) on the surface of the annealed samples at different temperatures were measured. In addition, a correlation between the hydrophilicity and the concentration of chemisorbed water on the film surface was suggested, independent of the...