Loading...
Search for: masihi--m
0.005 seconds
Total 164 records

    Phase behavior and interfacial tension evaluation of a newly designed surfactant on heavy oil displacement efficiency; effects of salinity, wettability, and capillary pressure

    , Article Fluid Phase Equilibria ; Vol. 396, issue , June , 2015 , p. 20-27 ; ISSN: 03783812 Dehghan, A. A ; Masihi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    This work aims to discuss the results of wide ranges of laboratory investigations to evaluate the performance of a newly-formulated surfactant for heavy oil reservoirs in order to improve the microscopic sweep efficiency after water flooding processes. In the first part, the specific behavior of the formulated surfactant including its salinity tolerance, interfacial tension, and optimum performance window was determined. Then, the application of surfactant solutions in real sandstone reservoir rocks was assessed for both oil-wet and water-wet cases. Besides, the effect of changing the capillary and viscous forces and interfacial tension on the residual phase saturations were characterized.... 

    Interfacial tension and wettability change phenomena during alkali-surfactant interactions with acidic heavy crude oil

    , Article Energy and Fuels ; Vol. 29, issue. 2 , January , 2015 , p. 649-658 ; ISSN: 08870624 Dehghan, A. A ; Masihi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    In this work, a newly formulated sulfonate-based surfactant and two other commercial sulfate-based surfactants with the capability of tolerating harsh underground reservoir conditions, such as high-saline formation water and high temperature, were prepared. Sodium metaborate as an effective alkali compound was also used to provide alkali-surfactant combination. Interfacial tension (IFT) measurements as well as wettability examinations for different salinities and mixture conditions were performed for an extended range of the chemical concentrations. The wettability tests including both contact angle measurements and Amott cell tests were performed on saturated Berea sandstone plug samples... 

    Random walk-percolation-based modeling of two-phase flow in porous media: Breakthrough time and net to gross ratio estimation

    , Article Physica A: Statistical Mechanics and its Applications ; Vol. 406, issue , July , 2014 , p. 214-221 ; ISSN: 03784371 Ganjeh-Ghazvini, M ; Masihi, M ; Ghaedi, M ; Sharif University of Technology
    Abstract
    Fluid flow modeling in porous media has many applications in waste treatment, hydrology and petroleum engineering. In any geological model, flow behavior is controlled by multiple properties. These properties must be known in advance of common flow simulations. When uncertainties are present, deterministic modeling often produces poor results. Percolation and Random Walk (RW) methods have recently been used in flow modeling. Their stochastic basis is useful in dealing with uncertainty problems. They are also useful in finding the relationship between porous media descriptions and flow behavior. This paper employs a simple methodology based on random walk and percolation techniques. The... 

    New modification on production data of gas condensate reservoirs for rate transient analysis

    , Article Petroleum Science and Technology ; Vol. 32, issue. 5 , Jan , 2014 , p. 543-554 ; ISSN: 10916466 Boogar, A. S ; Gerami, S ; Masihi, M ; Sharif University of Technology
    Abstract
    Techniques of production data analysis for single-phase oil and gas reservoirs have advanced significantly over the past few years. These techniques range from traditional (i.e., Arps, 1945; Fetkovich, 1980) to modern methods that account for the variation of operating conditions at the wellbore. However, the application of these later methods to gas condensate reservoirs is a challenge. The authors aimed to extend the applicability of modern production data analysis (single-phase flow) to analyze the production data of a gas condensate reservoir (two-phase flow). A single-phase production model consists of (a) a material balance equation, (b) the solution of diffusivity equation for gas... 

    A novel method for prediction of parameters of naturally fractured condensate reservoirs using pressure response analysis

    , Article Journal of Natural Gas Science and Engineering ; Vol. 19, issue , July , 2014 , p. 13-22 ; ISSN: 18755100 Haji Seyedi, S. H ; Jamshidi, S ; Masihi, M ; Sharif University of Technology
    Abstract
    Producing from gas condensate reservoirs under dew-point pressure and at constant temperature shows a complex behavior because of existing liquid condensate around the well. Zones with different mobilities generate three zones as a zone away from the well containing only gas, a zone having liquid around the well and finally a zone containing movable oil and gas. Existence of condensate around wellbore reduces gas relative permeability and as a result productivity index of the well will decrease. In fact, this condensate acts like an additional skin and investigating of this behavior can be difficult because of the complex fluid flow processes. Well test analysis in naturally fractured... 

    Evaluation of chemicals interaction with heavy crude oil through water/oil emulsion and interfacial tension study

    , Article Energy and Fuels ; Vol. 27, issue. 10 , September , 2013 , p. 5852-5860 ; ISSN: 08870624 Dehghan, A. A ; Masihi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    A newly-designed surfactant was formulated to tolerate the harsh conditions of oil reservoirs, including high salinity of the formation brine and temperature. The specific emulsion and interfacial tension (IFT) behavior of this new surface active agent were investigated by performing emulsion stability tests, emulsion size analysis, and IFT behavior in the presence of four different types of alkalis. Image processing was utilized to analyze the droplet size distribution using microscopic images of the samples. The results show that depending on the composition of the mixtures, the optimum phase region and interfacial tension behavior change considerably. Solutions containing a higher... 

    Lattice Boltzmann method on quadtree grids for simulating fluid flow through porous media: A new automatic algorithm

    , Article Physica A: Statistical Mechanics and its Applications ; Vol. 392, issue. 20 , May , 2013 , p. 4772-4786 ; ISSN: 03784371 Foroughi, S ; Jamshidi, S ; Masihi, M ; Sharif University of Technology
    Abstract
    During the past two decades, the lattice Boltzmann (LB) method has been introduced as a class of computational fluid dynamic methods for fluid flow simulations. In this method, instead of solving the Navier Stocks equation, the Boltzmann equation is solved to simulate the flow of a fluid. This method was originally developed based on uniform grids. However, in order to model complex geometries such as porous media, it can be very slow in comparison with other techniques such as finite differences and finite elements. To eliminate this limitation, a number of studies have aimed to formulate the lattice Boltzmann on the unstructured grids. This paper deals with simulating fluid flow through a... 

    Scaling equations for oil/gas recovery from fractured porous media by counter-current spontaneous imbibition: From development to application

    , Article Energy and Fuels ; Vol. 27, issue. 8 , July , 2013 , p. 4662-4676 ; ISSN: 08870624 Mirzaei-Paiaman, A ; Masihi, M ; Sharif University of Technology
    Abstract
    Spontaneous imbibition, the capillary-driven process of displacing the nonwetting phase by the wetting phase in porous media, is of great importance in oil/gas recovery from matrix blocks of fractured reservoirs. The question of how properly scaling up the recovery by counter-current spontaneous imbibition has been the subject of extensive research over decades, and numerous scaling equations have been proposed. As a convention, the scaling equations are usually defined analytically by relating the early time squared recovery to squared pore volume. We show this convention does not apply to common scaling practices and, if used, causes nontrivial scatter in the scaling plots. We explain that... 

    Well Placement optimization using hybrid optimization technique combined with fuzzy inference system

    , Article Petroleum Science and Technology ; Vol. 31, issue. 5 , Dec , 2009 , p. 481-491 ; ISSN: 10916466 Darabi, H ; Masihi, M ; Sharif University of Technology
    Abstract
    Decision on the location of new wells through infill drilling projects is a complex problem that depends on the reservoir rock and fluid properties, well and surface facilities specifications, and economic measures. Conventional approach to address this is a direct optimization that uses the numerical flow simulation. However, this is computationally very extensive. In this study the authors use a hybrid genetic algorithm (HGA) optimization technique based on the genetic algorithm (GA) with helper functions based on the polytope algorithm and the neural network. This hybridization introduces hill-climbing into the stochastic search and makes use of proxies created and calibrated iteratively... 

    Investigating the mechanism of water inflow in gas wells in fractured gas reservoirs and designing a controlling method

    , Article SPE Production and Operations Symposium, Proceedings ; Vol. 1, issue , May , 2012 , p. 323-340 ; ISBN: 9781613992012 Jafari, I ; Jamshidi, S ; Masihi, M ; Sharif University of Technology
    Abstract
    The coning phenomenon usually occurs in water and gas cap drive reservoirs. Water coning in Iranian hydrocarbon reservoirs is one of the most important problems that affects the cumulative production, operation costs and causes environmental problems. Before producing from a reservoir, its fluids are in equilibrium and their contact surfaces remain unchanged, but after starting production from the reservoir, when the viscous force overcome gravitational force in vertical direction, contact surfaces will displace and coning will occur. So, the production rates will be controlled in a range that prevents entering water and gas to the production well. For this reason, investigation and modeling... 

    Investigation into the capability of a modern decline curve analysis for gas condensate reservoirs

    , Article Scientia Iranica ; Vol. 18, issue. 3 C , June , 2011 , p. 491-501 ; ISSN: 10263098 Sadeghi Boogar, A ; Gerami, S ; Masihi, M ; Sharif University of Technology
    Abstract
    Techniques of production data analysis for single-phase oil and gas reservoirs have advanced significantly over the past few years. These techniques range from traditional (Arps and Fetkovich) to modern (for the variation of operating conditions at the wellbore). The application of these techniques for analysis of the production data of a gas condensate reservoir may not yield reliable answers due to the fact that the flow of fluid in gas condensate reservoirs is not single-phase. This paper presents the treatment of a modern method of production data analysis (single-phase flow) to analyze the production data of a gas condensate reservoir (two-phase flow). For this purpose, a single-phase... 

    The semi-analytical modeling and simulation of the VAPEX process of ""Kuh-e-Mond"" heavy oil reservoir

    , Article Petroleum Science and Technology ; Vol. 29, issue. 5 , Oct , 2009 , p. 535-548 ; ISSN: 10916466 Rasti, F ; Masihi, M ; Kharrat, R ; Sharif University of Technology
    Abstract
    The vapor extraction process (or VAPEX) uses vaporized solvents injected into a horizontal well to form a vapor chamber within the reservoir. Vapor dissolves in the oil and enhances the oil production by decreasing the oil viscosity in heavy oil reservoirs. To evaluate the process we conduct a simulation study on an Iranian heavy oil reservoir called Kuh-e-Mond. In addition, a semi-analytical investigation of the VAPEX process has been performed. The idea is to perform VAPEX simulation for a laboratory model and find a methodology to compare the results of the simulator with the semi-analytical Butler's model. In particular, a semi-analytical dimensionless correlation for production rate... 

    Recovery improvement using water and gas injection scenarios

    , Article Petroleum Science and Technology ; Vol. 29, issue. 3 , Sep , 2009 , p. 290-300 ; ISSN: 10916466 Tafty, M. F ; Masihi, M ; Momeni, A ; Sharif University of Technology
    Abstract
    Water and miscible gas injection scenarios are considered in an Iranian oil reservoir for the purpose of recovery improvement. Firstly reservoir fluid modeling and modeling of a slim tube test were performed. Then, water alternating gas (WAG) injection was evaluated by optimizing the WAG half cycle and WAG ratio. Alternatively, hybrid WAG and separate injection of water and gas in the top and bottom of the reservoir were also investigated. The numerical simulation results showed that the optimum WAG, with half cycle of 1.5 years and WAG ratio of one, gave the highest recovery factor. Moreover, economic evaluation of these scenarios indicated that WAG had the highest net present value and was... 

    Invasion percolation in presence of gravity

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Vol. 29, issue. 1 , 2010 , p. 71-82 ; ISSN: 10219986 Ma'Soum, S ; Masihi, M ; Sharif University of Technology
    Abstract
    Simultaneous capillary dominated displacement of the wetting and non-wetting phases are processes of interest in many disciplines including modeling of the penetration of polluting liquids in hydrology or the secondary migration in petroleum reservoir engineering. Percolation models and in particular invasion percolation is well suited to characterize the slow immiscible displacement of two fluids when both the gravity and viscous effects are negligible. In particular, the characteristic of the percolating cluster and the other important percolation properties at the breakthrough can be inferred. However, with the inclusion of the gravity forces, the behavior may change. For example, as the... 

    New technique for calculation of well deliverability in gas condensate reservoir

    , Article Deep Gas Conference and Exhibition 2010, DGAS 2010 ; January , 2010 , p. 51-59 ; SPE Deep Gas Conference and Exhibition, 24-26 January, Manama, Bahrain Publication Date 2010 Gerami, S ; Sadeghi, A ; Masihi, M ; Sharif University of Technology
    Abstract
    Well deliverability is an important issue in forecasting the performance of many gas condensate reservoirs. Condensate accumulation near the wellbore can cause a significant reduction in productivity, even in reservoirs where the fluid is very lean. Generally, the well deliverability is affected by two pressure-drop sources due to depletion and condensate buildup. Recently Rapid spreadsheet tools have developed to evaluate the well performance using material balance equation for depletion and two-phase pseudo pressure integral for well inflow performance. Most of them account for the effects of negative inertia and positive coupling in the calculation of gas relative permeability. This paper... 

    New technique for calculation of well deliverability in gas condensate reservoirs

    , Article Journal of Natural Gas Science and Engineering ; Vol. 2, issue. 1 , March , 2010 , p. 29-35 ; ISSN: 18755100 Sadeghi Boogar, A ; Masihi, M ; Sharif University of Technology
    Abstract
    Well deliverability is an important issue in forecasting the performance of many gas condensate reservoirs. Condensate accumulations near the wellbore may cause a significant reduction in the well productivity, even in the case of very lean fluids. Generally, the well deliverability is affected by two pressure-drop sources due to depletion and condensate buildup. Recently rapid spreadsheet tools have been developed to evaluate the well performance using material balance equation for depletion and two-phase pseudo pressure integral for well inflow performance. Most of them account for the effects of negative inertia and positive coupling in the calculation of gas relative permeabilities. This... 

    Utilization of percolation theory to evaluate conductivity of fractured reservoirs - Effect of fracture correlation length on universality

    , Article 72nd European Association of Geoscientists and Engineers Conference and Exhibition 2010: A New Spring for Geoscience. Incorporating SPE EUROPEC 2010 ; Vol. 6, issue , 2010 , p. 4286-4290 Ghorbani, S ; Masihi, M ; Hashemi, A ; Sharif University of Technology
    Abstract
    The knowledge of the conductivity across the reservoir that is based on the swept fraction controls the recoverable rates of the hydrocarbon in the secondary displacement processes. Most of the time, we need a fast estimation of the conductivity for decision making during field development. Percolation theory is a very useful tool to get this goal. According to this fact that the results of this method are universal, they could be used widely. In this study connectivity and conductivity percolation models are developed and the universal exponents for connectivity and conductivity in fractured reservoir as well as their dependency on the correlation length are investigated. For L< ξ the... 

    New modification on production data of gas condensate reservoirs for rate transient analysis

    , Article Petroleum Science and Technology ; Vol. 32, issue. 5 , 2014 , Pages 543-554 ; ISSN: 10916466 Boogar, A. S ; Gerami, S ; Masihi, M ; Sharif University of Technology
    Abstract
    Techniques of production data analysis for single-phase oil and gas reservoirs have advanced significantly over the past few years. These techniques range from traditional (i.e., Arps, 1945; Fetkovich, 1980) to modern methods that account for the variation of operating conditions at the wellbore. However, the application of these later methods to gas condensate reservoirs is a challenge. The authors aimed to extend the applicability of modern production data analysis (single-phase flow) to analyze the production data of a gas condensate reservoir (two-phase flow). A single-phase production model consists of (a) a material balance equation, (b) the solution of diffusivity equation for gas... 

    Lattice Boltzmann method on quadtree grids for simulating fluid flow through porous media: A new automatic algorithm

    , Article Physica A: Statistical Mechanics and its Applications ; Volume 392, Issue 20 , 2013 , Pages 4772-4786 ; 03784371 (ISSN) Foroughi, S ; Jamshidi, S ; Masihi, M ; Sharif University of Technology
    2013
    Abstract
    During the past two decades, the lattice Boltzmann (LB) method has been introduced as a class of computational fluid dynamic methods for fluid flow simulations. In this method, instead of solving the Navier Stocks equation, the Boltzmann equation is solved to simulate the flow of a fluid. This method was originally developed based on uniform grids. However, in order to model complex geometries such as porous media, it can be very slow in comparison with other techniques such as finite differences and finite elements. To eliminate this limitation, a number of studies have aimed to formulate the lattice Boltzmann on the unstructured grids. This paper deals with simulating fluid flow through a... 

    Scaling equations for oil/gas recovery from fractured porous media by counter-current spontaneous imbibition: From development to application

    , Article Energy and Fuels ; Volume 27, Issue 8 , 2013 , Pages 4662-4676 ; 08870624 (ISSN) Mirzaei Paiaman, A ; Masihi, M ; Sharif University of Technology
    2013
    Abstract
    Spontaneous imbibition, the capillary-driven process of displacing the nonwetting phase by the wetting phase in porous media, is of great importance in oil/gas recovery from matrix blocks of fractured reservoirs. The question of how properly scaling up the recovery by counter-current spontaneous imbibition has been the subject of extensive research over decades, and numerous scaling equations have been proposed. As a convention, the scaling equations are usually defined analytically by relating the early time squared recovery to squared pore volume. We show this convention does not apply to common scaling practices and, if used, causes nontrivial scatter in the scaling plots. We explain that...