Loading...
Search for: naghdabadi--reza
0.003 seconds
Total 68 records

    Evaluation of Material Properties of Short Carbon Nanotube-Based Composites Using Nonlocal ElasticityTheory

    , M.Sc. Thesis Sharif University of Technology Amelirad, Omid (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    Classical theory of elasticity, which is founded upon results of mechanical experiments on the large scale materials, has reasonable results in predicting mechanical properties. The basic idea in this theory is that stress at a point of the material is only a function of the local strain and it is independent of the nonlocal strains. Therefore, the size of the material does not play any role in analyzing mechanical behavior of materials using this theory. However, results from experiments and atomic simulations have shown that in nano scale materials, such as carbon nanotubes (CNTs) and their composites, mechanical properties are strongly dependent on the size parameters of these materials.... 

    Investigation of Mechanical Behavior of Short Carbon Nanotubes Reinforced Metal Matrix Nanocomposites Using Surface Elasticity Theory

    , M.Sc. Thesis Sharif University of Technology Saboori, Mohammad Ali (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    In recent years, carbon nanotubes have been the focus of considerable researches. Numerous investigators have reported remarkable physical and mechanical properties for this new form of carbon. In particular, the exceptional mechanical properties of carbon nanotubes, combined with their low density, offer scope for the development of nanotube reinforced composite materials. The potential for nanocomposites reinforced with carbon tubes having extraordinary specific stiffness and strength represent tremendous opportunity for application in this century and recently metal matrix type of these nanocomposites, due to their advantages, have received great attention. Classical theories of... 

    Investigating Effect of Nano Ceramic Coating of Combustion Chamber on the Performance of Internal Combustion Engines

    , M.Sc. Thesis Sharif University of Technology Sharifi, Masoud (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    Thermal barrier coatings (TBCs) are used for increasing the efficiency and reducing pollutants of internal combustion engines (ICEs). In this paper, an optimization framework is developed in order to obtain the optimal dimensions for conventional coat, and the optimal dimensions and material property for functionally graded (FG) coat of a partially coated piston. A thermo mechanical analysis is investigated for Nano coat by finite element method. The conventional and Nano coats are made of MgZrO_3 as the insulating ceramic overlay and NiCrAl as the metallic bond-coat. The properties of the FG coat is assumed to vary according to power law through the thickness. For all tree conventional, FG... 

    Experimental and Theoretical Analysis of Plastic Deformation of Metals under Impact Loading Using Taylor Impact Test

    , M.Sc. Thesis Sharif University of Technology Khayyer Dastjerdi Toroghi, Ahmad (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    In most of the engineering applications, the mechanical behavior of materials in high strain rate deformations differs from their behavior in quasi-static deformations. In some engineering problems like impact loading on structures, metal forming and explosive forming, the range of strain rate is about . Taylor impact test is one of the experiments used for characterizing the dynamic behavior of materials in high strain rate deformations. In the Taylor impact test a rigid cylindrical projectile is impacted normally onto a hard and massive surface (anvil), the projectile deforms by mushrooming at the impact end. With plastic wave propagation analysis, the plastic deformation of projectile is... 

    Investigating the Effect of Geometric Shape and Properties of Protein Corona on Drug Release Using Finite Element Method

    , M.Sc. Thesis Sharif University of Technology Mohammadi Hosseinabadi, Hossein (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    In novel drug delivery systems, once nanocarriers confront the biological milieu, their surface is rapidly covered with a layer of biomolecules (i.e., “protein corona”) which play an important role in their drug release rate. Various experimental studies have been done to elucidate the effect of nanoparticles properties on the drug release rate in different biological applications. The physical and geometrical properties of protein corona totally influence on the release profile. In this study, we proposed a suitable finite element model which contains the nanoparticles and the protein layer with their properties in the biological milieu. To this end, diffusion parameters including diffusion... 

    Experimental Study of High Strain Rate Effects on Steel Sheet Forming

    , M.Sc. Thesis Sharif University of Technology Sadeghi Chahardeh, Alireza (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    Strain rate dependence of plastic yield and failure properties displayed by most metals affects energies, forces and forming limits involved in high speed forming processes. This paper investigates the influence of the strain rate on the forming properties of some industrial sheet metals used in Automotive and Aerospace industries. First, Split Hopkinson Tensile Bar (SHTB) experiments are carried out to determine the influence of the strain rate on the materials’ stress-strain curves. Then, the SHTB results are used to model the constitutive behaviour of the metal sheets using the phenomenological Johnson-Cook (JC) and Voce models. Finally, forming limit diagrams (FLDs) are calculated using... 

    Exploring Auxetic Metamaterials by Changing the Geometrical Parameters

    , M.Sc. Thesis Sharif University of Technology Ashouri, Amir (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    The properties of metamaterials can be tailored through modification of their microstructures geometry. In this regard, a vast range of metamaterials have been designed. Auxetic metamaterials are a novel class of materials exhibiting the interesting characteristic of negative Poisson’s ratio. Theoretically, auxetic metamaterials have improved mechanical properties such as shear modulus and fracture toughness. The design and modeling of auxetic metamaterials is not completed yet. In order to exploit the interesting properties of auxetic metamaterials, their potential applications have been investigated in medical, sports, automobile and defense industries, so far. In the present work, the... 

    Thermoelastic Analysis of Thick-walled FG Cylinders Using the Strain Gradient Elasticity

    , M.Sc. Thesis Sharif University of Technology Sadeghi, Hossein (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    There are experimental observations that show material response in micro-scale is dependent on some other parameters rather than Lame parameters. Strain gradient elasticity has been recently developed to take into account this characteristic of materials response. In strain gradient elasticity, characteristic length parameters enter the constitutive equations through the elastic strain energy density function. The elastic strain energy density function is assumed to be a function of the gradient of strain tensor in addition to the strain tensor. In this way, new material constant (characteristic length parameters) are introduced and entered into the constitutive equations. In recent years,... 

    Investigating Effects of Interphase on Mechanical Properties of Particulate Metal-Matrix Nanocomposites Using Surface Elasticity

    , M.Sc. Thesis Sharif University of Technology Ebrahimi Estahbanati, Parvin (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    Due to ignoring the effect of length scale and neglecting the details at nanosize, classical methods are not sufficiently accurate to determine the properties of nanostructured materials. More reliable results can be obtained, using surface elasticity theory. Lots of analytical, experimental and numerical investigations have been done on the effect of interphase on the mechanical properties of polymer nanocomposites whereas metal matrix nanocomposites are in the first stages of analytical and numerical researches and have attracted so much attention.
    The main objective of this research is to investigate the effects of interphase as well as coating, on the mechanical behavior of metal... 

    Analysis of Ratcheting in Elastic-plastic Behavior of Li-ion Battery Electrodes

    , M.Sc. Thesis Sharif University of Technology Hashemi, Mohammad Ali (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    Among the various materials, silicon anodes have the highest lithium absorption in lithium-ion batteries. But this high lithium absorption capacity can cause 300 percent volume expansion and large stresses. Experimental observations show that charge and discharge cycles may cause plastic deformation in some parts of the electrode particle. On the other hand, there is a possibility of a ratcheting phenomenon due to changing in elastic properties of the electrode material during the charging and discharging processes. However, this phenomenon has not been reported for silicon spherical electrode particles yet.This study aims to model the elastic-plastic behavior of silicon spherical electrode... 

    An Analytical Solution for the Polymeric Liner Collapse in Hyperbaric type IV Hydrogen Storage Vessels

    , M.Sc. Thesis Sharif University of Technology Alizadeh, Mostafa (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    Type IV high pressure vessels are composite vessels with a polymeric liner, which are the best choice for storing hydrogen in hydrogen vehicles. The defect of these vessels is the penetration of light hydrogen molecules in the polymeric liner and the composite part. When depressurization the vessel, these molecules cannot release from the polymeric liner and the composite part according to the emptying rate of the vessel. Thus, concentration of the hydrogen molecules in the polymeric liner becomes more than inside the vessel which leads to a pressure difference between the two sides of the polymeric liner that causes the liner collapse. In this research, the partial differential equation for... 

    Analysis of Photo-Mechanical Response of Light Sensitive Homogeneous Hydrogels

    , M.Sc. Thesis Sharif University of Technology Jafari Khoshnabadi, Mohammad Amin (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    Light-sensitive hydrogels are advanced materials with modern applications that have the ability to deform with light radiation at specific frequencies. Numerous studies have been conducted to identify the behavior and deformation of these materials. Most studies have experimentally investigated the light-sensitive behavior of hydrogels. On the other hand, modeling the behavior of light-sensitive hydrogels is very complicated, so that the use of these models is possible only in certain cases. Therefore, in the present study, the existing studies have been reviewed in order to simplify the relationships governing the deformation of light-sensitive hydrogels. In this regard, the deformation... 

    Modeling Magneto-Mechanical Behavior of Porous Magnetic Gel at Large Deformations in External Magnetic Field

    , M.Sc. Thesis Sharif University of Technology Rezaei, Shayan (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    Magnetic gels and ferrogels are smart composite materials made by combining magnetic particles in a polymer matrix. These materials have been considered due to their special properties such as deformation and change of mechanical properties in the presence of external magnetic field. Having polymer properties along with the magnetic properties of metals, have led these materials to many uses such as drug delivery and artificial muscles. The increasing use of these materials has led researchers to continue research in the field of modeling ferrogels. Due to the porous nature of ferrogels, the ability to absorb a lot of liquid and their large deformations in the magnetic field, modeling of... 

    Modeling Optomechanical Behavior of Optical Metasurfaces Subject to Light and Elastic Deformation

    , M.Sc. Thesis Sharif University of Technology Talebi Habibabadi, Sajjad (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    Optical metasurfaces are 2D structures of a repetitive arrangement of a number of nanoparticles that are artificially constructed and do not exist in nature. Important applications of optical metasurfaces are meta lenses, flexible solar cells and extremely small antennas. Fabricating surfaces with nanoparticles of proper geometry under light radiation along with elastic deformation, we can have optical metasurfaces with selective reflection or transparency in the visible spectrum. The aim of this project is modeling of an optical metasurface with elastic deformation leading to change of color and transparency. For this purpose, assuming vertical light radiation and linear polarization, we... 

    Constitutive Modeling of Nonlinear Tumor Growth; A Finite Element Approach

    , M.Sc. Thesis Sharif University of Technology Hosseinalizadeh, Mohammad (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    Mechanical forces play a crucial role in tumor patho-physiology. Compression of cancer cells inhibits their proliferation rate and induces apoptosis. Additionally, compression of intratumor blood vessels has negative impacts on drug delivery system. Despite the great importance of the mechanical forces on the pathology of cancer, there are limited studies on the constitutive modeling of tumors. In this study, first, the tumor growth inside a rigid cylinder with an exponential growth function is represented, a model mimicking the growth of ductal carcinoma. Then, a mathematical model of a spherical tumor growth with a Gompertz growth function is represented. Using the notion of multiple... 

    Investigation of Mechanical Properties of Particulate Metal Matrix Nanocomposites Using Surface Elasticity Theory

    , M.Sc. Thesis Sharif University of Technology Farajzadeh Moshtaghin, Alireza (Author) ; Naghdabadi, Reza (Supervisor) ; Asghari, Mohsen (Supervisor)
    Abstract
    Excellent mechanical properties and high aspect ratio of carbon nanotubes have been the reason for extensive research on nanocomposites reinforced by this nanostructure, and recently metal matrix type of these nanocomposites, due to their advantages, have received great attention. Moreover, nanoporous materials are another type of nanostructured materials which due to their very high porosity have special applications in hydrogen storage, separating molecules, purification and energy absorption. Because of completely neglecting the details of nanoscale structure and not paying attention to the length scale, classical continuum mechanics methods are not precise enough for evaluating different... 

    3D Finite Element Modeling of Head for Studying Subdural Hemorrhage Induced by Impact

    , M.Sc. Thesis Sharif University of Technology Sahandifar, Pooya (Author) ; Naghdabadi, Reza (Supervisor) ; Sohrabpour, Saeed (Supervisor)
    Abstract
    Subdural hemorrhage (SDH) is one of the most common traumatic brain injuries. The mortality rate of SDH is over 30 percent. In addition, patients require to visit hospital for treatment and further healthcare. According to the costs of treatment and frequency of injuries, prevention of SDH is essential. 3D-Finite element modeling of human head is an appropriate tool for evaluation of injury risk and setting up a prevention tolerance criteria. The aim of this study is to create a 3D finite element model of human head with special consideration of vessels. Vessels are modeled by truss elements at current finite element models of human head; however, geometry of vessels is regarded as simple... 

    Elastic-Plastic Analysis of Fiber Reinforced Metal Matrix Composite Structures

    , M.Sc. Thesis Sharif University of Technology Mehvari Habibabadi, Reza (Author) ; Naghdabadi, Reza (Supervisor) ; Asghari, Mohsen (Supervisor)
    Abstract
    In this study, an elastic-plastic analysis of fiber reinforced metal matrix composite structures loaded by uniaxial uniform tension in the direction perpendicular to the fiber is carried out by assuming elastic-plastic matrix with kinematic hardening. Representative volume element (RVE) is used for this analysis. The element consists of a combined square field composed of a solid circular cylinder fiber and matrix in plane strain condition. Elastic analysis is carried out using Airy stress function and Michell solution. Unknown coefficients of the Airy stress function are determined by satisfying boundary conditions as well as continuity conditions. The governing equation of plastic zone is... 

    Constitutive Modeling and Numerical Simulation of Coronary Arteries Mechanical Behavior in Stenting and Succeeding Growth

    , Ph.D. Dissertation Sharif University of Technology Fereidoonnezhad, Behrooz (Author) ; Naghdabadi, Reza (Supervisor) ; Sohrabpour, Saeed (Supervisor)
    Abstract
    Cardiovascular diseases are the major cause of death worldwide. Atherosclerosis is one of the major types of cardiovascular diseases in which fibrous and fatty materials, called plaque, build up inside the artery and cause partial or total occlusion of the artery. Intravascular balloon angioplasty with or without stenting is the most common treatment of this disease. In 2010, approximately 954000 stent implantations were performed in the United States. The major issue associated with stenting is reclosure or renarrowing of the transverse section of the artery termed in-stent restenosis (ISR). Unfortunately, nearly one–third of the patients
    who receive stent implantation require further... 

    A Constitutive Model to Predict the Strain Rate Dependent Behavior of Auxetic Materials

    , M.Sc. Thesis Sharif University of Technology Heidari, Mohammad Hossein (Author) ; Arghavani, Jamal (Supervisor) ; Naghdabadi, Reza (Supervisor)
    Abstract
    A new types of architected cellular materials are those with negative poisoon’s ratio named auxetic. This materials indicate unormal behavior under different loads as if they were stretched in one direction, they also expanded in other directions and if pressure is exerted in one direction, they are compressed in all directions. Auxetic materials can improve mechanical properties such as shear strength, strength to weight ratio, thoghness, energy and vibration dissipation and crack expansion due to fatigue.The useful features of this material have been taken into account in a variety of industries, including the automotive industry, in the manufacture of parts such as body and bumper,...