Loading...
Search for: pak--a
1.517 seconds

    Numerical investigation into the effects of geometrical and loading parameters on lateral spreading behavior of liquefied layer

    , Article Acta Geotechnica ; 2013 , Pages 1-13 ; 18611125 (ISSN) Pak, A ; Seyfi, S ; Ghassemi, A ; Sharif University of Technology
    2013
    Abstract
    Numerical simulation of liquefaction-induced lateral spreading in gently sloped sandy layers requires fully coupled dynamic hydro-mechanical analysis of saturated sandy soil subjected to seismic loading. In this study, a fully coupled finite element model utilizing a critical-state two-surface-plasticity constitutive model has been applied to numerically investigate the effects of surface/subsurface geometry on lateral spreading. Using a variable permeability function with respect to excess pore pressure ratio is another distinctive feature of the current study. The developed code has been verified against the results of the well-known VELACS project. Lateral spreading phenomenon has been... 

    Impact of hydraulic hysteresis on the small strain shear modulus of unsaturated sand

    , Article Soils and Foundations ; Volume 58, Issue 2 , 2018 , Pages 344-354 ; 00380806 (ISSN) Khosravi, A ; Shahbazan, P ; Pak, A ; Sharif University of Technology
    Japanese Geotechnical Society  2018
    Abstract
    The results of previous studies on silt and clay indicated that variations in the small strain shear modulus, Gmax, during hydraulic hysteresis had a non-linear increasing trend with matric suction, with greater values upon wetting. However, due to differences in material properties and inter-particle forces, a different behavior is expected for the Gmax of unsaturated sand. Although considerable research has been devoted in recent years to characterizing the behavior of the Gmax of sand during drying, less attention has been paid to the effect of hydraulic hysteresis on Gmax and its variations during wetting. In the study presented herein, an effective stress-based semi-empirical model was... 

    A new method for assessment of engineering drawing answer scripts using fuzzy logic

    , Article Journal of Computational Applied Mechanics ; Volume 51, Issue 1 , June , 2020 , Pages 170-183 Haghshenas Gorgani, H ; Jahantigh Pak, A ; Sharif University of Technology
    University of Tehran  2020
    Abstract
    Popular method for assessment of final exam answer scripts in university and among the engineering drawing answer scripts based on absolute true or false judgment and assigning a single number or letter to answer of each problem cannot be so fair. To obtain a fair assessment method, we considered “imagination”, “accuracy”, “drawing” and “innovation” that are objectives of engineering drawing course to be separately assessed for each problem. Flexibility and linguistic properties of fuzzy logic made us use it as the basis of our method. In addition, fuzzy variables and membership functions are easily linguistic explainable, and adjustable to different conditions. “Answering time” was added as... 

    Study of pore pressure variation during liquefaction using two constitutive models for sand

    , Article Soil Dynamics and Earthquake Engineering ; Volume 27, Issue 1 , 2007 , Pages 60-72 ; 02677261 (ISSN) Taiebat, M ; Shahir, H ; Pak, A ; Sharif University of Technology
    2007
    Abstract
    Numerical analyses of liquefiable sand are presented in this paper. Liquefaction phenomenon is an undrained response of saturated sandy soils when they are subjected to static or dynamic loads. A fully coupled dynamic computer code is developed to predict the liquefaction potential of a saturated sandy layer. Coupled dynamic field equations of extended Biot's theory with u-P formulation are used to determine the responses of pore fluid and soil skeleton. Generalized Newmark method is employed for integration in time. The soil behavior is modelled by two constitutive models; a critical state two-surface plasticity model, and a densification model. A class 'B' analysis of a centrifuge... 

    Large deformation finite element modeling of rubble mound breakwater built on soft seabed using coupled eulerian–lagrangian method

    , Article Indian Geotechnical Journal ; Volume 51, Issue 2 , 2021 , Pages 315-328 ; 09719555 (ISSN) Masoudi, S ; Shahir, H ; Pak, A ; Sharif University of Technology
    Springer  2021
    Abstract
    For the design of rubble mound breakwaters on soft soil, it is essential to predict the behavior of soft soil and large deformations phenomena occurring in the course of construction of the rubble mound breakwater. Large deformations in various problems can be well simulated using the coupled Eulerian–Lagrangian (CEL) method. In this study, the CEL method has been used to simulate the rubble mounds construction on soft soil and predict the resulting settlements. To validate the numerical model, the results of three experiments conducted in the physical modeling laboratory at Kharazmi University were used. Also, two case studies of real rubble mound breakwaters constructed on soft seabeds... 

    Behavior of dry and saturated soils under impact load during dynamic compaction

    , Article 16th International Conference on Soil Mechanics and Geotechnical Engineering: Geotechnology in Harmony with the Global Environment, ICSMGE 2005, Osaka, 12 September 2005 through 16 September 2005 ; Volume 3 , 2005 , Pages 1245-1248 ; 9059660285 (ISBN); 9789059660281 (ISBN) Pak, A ; Shahir, H ; Ghassemi, A ; Sharif University of Technology
    2005
    Abstract
    Dynamic compaction is a widely used soil improvement method in dry and/or saturated soils. Despite its vast application, its design basis is still empirical and the mechanisms that are involved in the procedure are not fully understood. A fully coupled dynamic finite element code has been developed in order to clarify the ambiguities in the process and predict the strain/displacement field in the ground, determine depth and degree of improvement, and also calculate the pore pressure variation during the process. This model can be used as a rational design tool for dynamic compaction projects  

    Investigation of the influence of permeability coefficient on the numerical modeling of the liquefaction phenomenon

    , Article Scientia Iranica ; Volume 19, Issue 2 , 2012 , Pages 179-187 ; 10263098 (ISSN) Rahmani, A ; Ghasemi Fare, O ; Pak, A ; Sharif University of Technology
    2012
    Abstract
    The soil permeability coefficient plays a key role in the process of numerical simulation of the liquefaction phenomenon. Liquefaction causes a considerable increase in soil permeability, due to the creation of easier paths for water flow. The work presented in this paper tries to investigate the effects of permeability coefficient on the results of numerical modeling of the liquefaction phenomenon. To do this, a fully coupled (u-P) formulation is employed to analyze soil displacements and pore water pressures. Two different versions of a well-calibrated critical state bounding surface plasticity model, which possesses the capability to utilize a single set of material parameters for a wide... 

    Some numerical issues using element-free galerkin mesh-less method for coupled hydro-mechanical problems

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 33, Issue 7 , 2009 , Pages 915-938 ; 03639061 (ISSN) Oliaei, M. N ; Soga, K ; Pak, A ; Sharif University of Technology
    2009
    Abstract
    A new formulation of the element-free Galerkin (EFG) method is developed for solving coupled hydromechanical problems. The numerical approach is based on solving the two governing partial differential equations of equilibrium and continuity of pore water simultaneously. Spatial variables in the weak form, i.e. displacement increment and pore water pressure increment, are discretized using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create the discrete system equations and a fully implicit scheme is used for discretization in the time domain. Implementation of essential boundary conditions is based on a penalty method. Numerical stability of the... 

    Seismic active pressure distribution history behind rigid retaining walls

    , Article Soil Dynamics and Earthquake Engineering ; Volume 28, Issue 5 , 2008 , Pages 365-375 ; 02677261 (ISSN) Azad, A ; Yasrobi, S. S ; Pak, A ; Sharif University of Technology
    2008
    Abstract
    Evaluating the seismic active earth pressure on retaining walls is currently based on pseudo-static method in practices. In this method, however, it is not simple, choosing an appropriate value for earthquake coefficient, which should fully reflect the dynamic characteristics of both soil and loading is an important problem. On the other hand, by using only two extra dynamic parameters that are shear wave velocity of soil and predominant frequency of probable earthquake, one can benefit from another more accurate tool called pseudo-dynamic method to solve the problem of earth pressure. In this study in the framework of limit equilibrium analysis, pseudo-dynamic method has been applied into... 

    Characterizing the variation of small strain shear modulus for silt and sand during hydraulic hysteresis

    , Article 3rd European Conference on Unsaturated Soils, 12 September 2016 through 14 September 2016 ; Volume 9 , 2016 ; 22671242 (ISSN) Khosravi, A ; Rahimi, M ; Shahbazan, P ; Pak, A ; Gheibi, A ; Sharif University of Technology
    EDP Sciences  2016
    Abstract
    Experimental studies have indicated that the small strain shear modulus, Gmax, of unsaturated silt and clay has a greater amount during imbibition than during drainage, when presented as a function of matric suction. However, due to material properties and inter-particle forces, different behavior is expected in the case of sand. Although considerable research has been devoted in recent years to characterize the behaviour of Gmax of sand during drainage, rather less attention has been paid to the effect of hydraulic hysteresis on Gmax and its variations during imbibition. In the study presented herein, an effort has been made to compare the Gmax behavior of specimens of silt and sand during... 

    A hybrid algorithm for adjusting the input parameters of the wirecut EDM machine in order to obtain maximum customer satisfaction

    , Article SN Applied Sciences ; Volume 5, Issue 1 , 2023 ; 25233971 (ISSN) Haghshenas Gorgani, H ; Jahazi, A ; Jahantigh Pak, A ; Shabani, S ; Sharif University of Technology
    Springer Nature  2023
    Abstract
    This study presents an algorithm to optimally adjust the input parameters of the wirecut to align its output with the customer’s expectations. For this, AHP and QFD are used to identify and prioritize customer needs in the form of a desirability function. Then, using the Taguchi method, variance analysis, and regression, a fitness function is prepared and optimized by the multi-objective genetic algorithm. Through a case study, the proposed method is validated in terms of flexibility, simplicity, speed, cost-effectiveness, and updateability. Also, customer satisfaction is calculated for two groups of 45 people, with and without using the proposed method. The growth of the customer... 

    A large plasticity deformation of unsaturated soil for 3d dynamic analysis of lower San-Fernando dam

    , Article Asian Journal of Civil Engineering ; Volume 12, Issue 1 , 2010 , Pages 1-25 ; 15630854 (ISSN) Khoei, A. R ; Anahid, M ; Zarinfar, M ; Ashouri, M ; Pak, A ; Sharif University of Technology
    2010
    Abstract
    In this paper, a large plasticity deformation finite element modeling is presented for three-dimensional dynamic analysis of unsaturated soils with special reference to the failure of lower San Fernando dam under the 1971 earthquake. The finite element method is applied to the governing equations for the spatial discretization, followed by a generalized Newmark scheme used for the time domain discretization. Time stepping scheme is used in the fully implicit coupled method and a direct solution procedure is used for the coupled equation system. The framework of generalized plasticity is presented and the numerical results of unsaturated soils are demonstrated based on the Pastor-Zienkiewicz... 

    Spark plasma sintering of a multilayer thermal barrier coating on Inconel 738 superalloy: Microstructural development and hot corrosion behavior

    , Article Ceramics International ; Volume 42, Issue 2 , 2016 , Pages 2770-2779 ; 02728842 (ISSN) Pak Seresht, A. H ; Javadi, A. H ; Bahrami, M ; Khodabakhshi, F ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In the present work, spark plasma sintering (SPS) process was employed to prepare a nanostructured yttria-stabilized zirconia (8YSZ) coating on a nickel-based superalloy (INCONEL 738) with functionally graded structure. A stack layer of INCONEL 738/NiCrAlY powder/Al foil/NiCrAlY+YSZ powder/YSZ powder was SPSed in a graphite die at an applied pressure of 40 MPa under an vacuum atmosphere (8 Pa). The sintering temperature was ∼1040 °C. For comparison purpose, the air plasma spray (APS) technique was employed to prepare the thermal barrier coating (TBC). Microstructural studies by scanning electron microscopy showed that the SPSed coating was sound and free of interfacial cracks and large... 

    Evaluation of hydraulic fracturing pressure in a porous medium by using the finite element method

    , Article Energy Sources ; Volume 24, Issue 8 , 2002 , Pages 715-724 ; 00908312 (ISSN) Nouri, A ; Panah, A. K ; Pak, A ; Vaziri, H ; Islam, M. R ; Sharif University of Technology
    2002
    Abstract
    Hydraulic fracturing is a complicated phenomenon in which deformation of the porous medium and fluid leak-off to the surrounding area take place simultaneously. Their interaction therefore must not be overlooked. Modeling of this phenomenon in isothermal conditions requires analysis of soil deformation and crack and pore fluid pressure interaction. In this paper, a numerical scheme is presented for analysis of soil stresses and deformations and fluid flow in a coupled manner. This scheme is also used to detect the fracture in the medium. Our model was used in simulating a set of hydraulic fracturing experiments. These experiments were performed on compacted hollow cylindrical specimens under... 

    Rock joint modeling using a visco-plastic multilaminate model at constant normal load condition

    , Article Geotechnical and Geological Engineering ; Volume 24, Issue 5 , 2006 , Pages 1449-1468 ; 09603182 (ISSN) Mahin Roosta, R ; Sadaghiani, M. H ; Pak, A ; Saleh, Y ; Sharif University of Technology
    2006
    Abstract
    Rock joints play an important role in the behavior of rock masses under normal and shear loading conditions. Numerical simulation of the behavior of jointed rock masses is not an easy task due to complexities involved in the problem such as joint roughness, joint shear strength, hardening and softening phenomenon and mesh dependency. In this study for modeling purposes, a visco-plastic multilaminate model considering hardening and softening effects has been employed. For providing the necessary data for numerical simulation, a series of laboratory experiments have been carried out on regular tooth-shape asperities made by gypsum, under constant normal load conditions. Shear stress-shear... 

    Numerical evaluation of hydraulic fracturing experiments

    , Article Canadian Society for Civil Engineering - 31st Annual Conference: 2003 Building our Civilization, Moncton, NB, 4 June 2003 through 7 June 2003 ; Volume 2003 , 2003 , Pages 2309-2312 ; 1894662040 (ISBN); 9781894662048 (ISBN) Nouri, A ; Panah, A. K ; Pak, A ; Vaziri, M. H ; Islam, M. R ; Sharif University of Technology
    2003
    Abstract
    Improved methods of constructing wells and producing wells are one of the keys to increasing field profitability. In the areas of well construction and well productivity optimization, many of the problems encountered are related to the geomechanics of the reservoir and the overlying layers; these problems include well-bore stability, sand production and hydraulic fracturing. Hydraulic fracturing is a complicated phenomenon in which deformation of the porous medium and fluid leak-off to the surrounding area take place simultaneously. Their interaction, therefore, must not be overlooked. In the past, some experimental researchers performed laboratory investigations on the phenomenon of... 

    Experimental Study of Geotextile's Drainage and Filtration Properties in Dams under Different Hydraulic Gradients and Boundary Conditions

    , M.Sc. Thesis Sharif University of Technology Zahmatkesh, Zahra (Author) ; Pak, Ali (Supervisor)
    Abstract
    Geotextiles are one of the most widely used materials in filtration and drainage applications. Since geotextiles are exposed to different stresses and hydraulic gradients, thier hydraulic behavior in real situations is of great importance. In this study, filtration and drainage of several nonwoven needle-punched geotextiles with different properties and unit masses per area of 200g/m2, 400g/m2, 500g/m2 and 800g/m2 under various confined stresses and hydraulic gradients are investigated. To get to these aims, permittivity and transmissivity apparatuses were designed and built in the course of this investigation. Then samples which were emerged for at least 24 hours were tested under different... 

    Dynamic Analysis of Pile Foundations Embedded in Liquefiable Soils

    , M.Sc. Thesis Sharif University of Technology Rahmani, Amin (Author) ; Pak, Ali (Supervisor)
    Abstract
    The behavior of pile foundations under earthquake loading is an important issue that affects the performance of structures. Design procedures have been developed for evaluating pile behavior under earthquake loading; however, the application of these procedures to cases involving liquefiable ground is uncertain. The performance of piles in liquefied soil layers is much more complex than that of non-liquefying soil layers because not only the superstructure and the surrounding soil exert different dynamic loads on pile, but also the stiffness and shear strength of surrounding soil diminishes over time due to both non-linear behavior of soil and pore water pressure generation. In this... 

    Investigation of Group Pile Behavior under Lateral Loads in Clayey Soils

    , M.Sc. Thesis Sharif University of Technology Koohsari, Ali (Author) ; Pak, Ali (Supervisor)
    Abstract
    Piles are usually used in groups. The complicated interaction between piles on the one hand and between piles and their surrounding soil on the other hand, have made it difficult to recognize mechanisms that influence the pile group behavior and analyze it accurately. In this research, three dimensional models in ABAQUS software were used to investigate response of single piles and pile groups under lateral loading in clayey soils. Configuration of piles in a group, connection of piles to the pile cap, pile spacings, and pile cross section were taken into consideration as some important factors affecting response of pile groups. All the modeled piles were categorized as long piles. In order... 

    Numerical Modeling of Linear and Nonlinear Flow in Saturated Fractured Porous Media

    , M.Sc. Thesis Sharif University of Technology Nayer, Reza (Author) ; Pak, Ali (Supervisor)
    Abstract
    Study of fluid flow through the porous fractured media is used in many branches of science such as oil production, environment, water resources, geotechnics and mining, and the results of these researches are useful for industries.The porous fractured media consist of two main parts each having different roles. The first is the fracture networks that act as channels to conduct the fluid in the media, and the second is the porous media that act as a storage space for the fluid. The differences of dimensions and ability of fluid conduction between these two parts would cause the flow analysis to be performed in a heterogeneous and non-isotropic media. Moreover, the irregular networks of...