Loading...
Search for: air-cooled-condensers
0.004 seconds

    Study and Practical Solutions to Reduce the Heat Load Air Cooler in unit 200 Bouali Sina Petrochemical Co. to Reduce the Flaring

    , M.Sc. Thesis Sharif University of Technology Mohebbifar, Majid (Author) ; Farhadi, Fatollah (Supervisor)
    Abstract
    Inappropriate performance of the air-cooled condensers in the process industry will make the flow out of the air cooler not fully condensate and its pressure is greater than the design value. This will lead to product loss and safety issues. In this study, factors affecting the performance of air cooler and various solutions to solve these problems have been identified. As a case study, the first distillation tower of the Ali Siana Petrochemical Complex, which disrupts its function in some months of the year, has been investigated. Aspen Hysys process simulation software simulates the naphtha splitter unit and the Aspen Exchangers Design & Rating software simulates the air cooled condesor... 

    Use of Numerical Simulation to Study the Reduction of Steam Turbine Back Pressure Via Implementing Heat Pipe in Upstream Air Condenser

    , M.Sc. Thesis Sharif University of Technology Mashayekh, Kazem (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    Iran's experience shows that either single or combined power generation cycles, face heavy summer performance deficiencies. The most limitation of power generation in steam cycles is due to their poor condenser performance.The less condenser performance, the more turbine back pressure, and the more turbine back pressure, the less cycle power generation. The main objective of the present study is to reduce steam turbine back pressure in the combined cycle of an organic Rankine-vapor compression refrigeration by installing heat pipes in suitable locations inside the Air cooled condense (ACC). In order to do so, a commercial numerical simulation solver (FLUENT) is used to find the most suitable... 

    Using Aerodynamic Obstacles to Increase the Thermal Performance of Power Plant Cooling Systems Consisting of Air Cooled Condenser

    , M.Sc. Thesis Sharif University of Technology Niyafar, Omid (Author) ; Darbandi, Massoud (Supervisor)
    Abstract
    According to the recent researches it has been found that wind can reduce the efficiency of Air Cooled Condensers (ACC) which use for cooling purposes in power plants. Wind affects the natural suction of the cooling air and makes local low pressure area in fan’s inlet results to disrupt its normal performance. Using aerodynamic obstacles inside and around the condensers can compensate this lack of performance when there is strong wind. In this thesis with the aid of computational fluid dynamics, condenser’s behavior with various weather situations is studied. Simulation in no wind situation and different wind speeds is considered and accomplished with Gambit Fluent software. This simulation... 

    Improvement of a Steam Turbine Performance in a Combined Power Cycle Benefiting from Aerodynamics Solutions Applied on its Air-Cooled Condenser

    , M.Sc. Thesis Sharif University of Technology Khorshidi Behzadi, Hamid Reza (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    Air-cooled condenser is widely used in thermal power plants as its main cooling system. However, the thermal capacity of air-cooled condensers reduces considerably in environmental wind drafts. So, the purpose of this study is to find practicable solutions to minimize the mal-performance of air-cooled condensers in windy conditions in either design or off-design conditions and consequently prevent the related steam turbines power reduction. The target combined cycle power plant consists of 4*160 MW steam turbines and 4 air-cooled condensers in its steam cycle part. This research presents two general and practical remedies, which are also applicable to many different powerplants irrespective... 

    Numerical Simulation to Improve the Performance of Air-cooled Steam Condenser Ejector and Steam Turbine Operation in a Rankine Cycle

    , M.Sc. Thesis Sharif University of Technology Sabzpoushan, Ali (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    Nowadays, widespread needs for creating low pressure ambient in various industries make vacuum systems have different research and industrial applications. One of these applications is in cooling system of Rankine power cycle. In this case, the performance of the vacuum system has a direct and significant effect on the cooling performance of the condenser and consequently, power production of the steam turbine. Also, a considerable part of deration in thermal power plants industry is due to the thermal deration of the cooling systems. This is mostly because of malfunction of the condenser due to ambient temperature rise. Therefore, by providing suitable solutions to improve the efficiency... 

    The study of air-cooled condenser in high wind velocity and environmental temperature conditions

    , Article 52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014 ; 2014 ; ISBN: 9781624102561 Darbandi, M ; Behrouzifar, A ; Salemkar, H ; Schneider, G. E ; Sharif University of Technology
    Abstract
    The use of air-cooled condenser (ACC) has become very popular in erecting thermal powerplants around the world since two or three decades ago. The advantages of forced convection heat cooling system, instead of the classical natural draught convection heat transfer cooling systems, promote the thermal powerplant designers and users to benefit more from such systems in their thermodynamics cycles. However, such forced convection heat transfer mechanisms, can lose their cooling efficiency in off-design ambient conditions, i.e., in high wind velocity and high ambient temperature conditions. There have already been some efforts to analyze the reduction of ACC System performance in some critical... 

    Enhanced solar still condensation by using a radiative cooling system and phase change material

    , Article Desalination ; Volume 467 , 2019 , Pages 43-50 ; 00119164 (ISSN) Amarloo, A ; Shafii, M. B ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, an experimental investigation of using the radiative cooling potential in a solar still was studied. Instead of using an auxiliary radiative panel, an integrated collector was utilized for both processes of absorption of solar radiations and emission of infrared radiations for radiative cooling. At night-time, the coldness was stored in the PCM inside the PCM-condenser. While during the day, the water was evaporated in an evaporation tank, the produced vapor was directed to the PCM-condenser and the air cooled-condenser. Different condenser configurations were tested to evaluate the effect of radiative cooling on daily yield and solar still efficiency. The lower temperature of... 

    Multistage recovering ventilated air heat through a heat recovery ventilator integrated with a condenser-side mixing box heat recovery system

    , Article Journal of Building Engineering ; Volume 24 , 2019 ; 23527102 (ISSN) Jafarinejad, T ; Shafii, M. B ; Roshandel, R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Recovering ventilated air heat in direct expansion (DX) HVAC systems has extensively been researched and many solutions have been introduced until now, such as air-to-air heat recovery ventilator (HRV) units. The ventilated air from building itself or an HRV unit, has heat recovery potentials yet to be exploited, owing to its lower temperature compared with the ambient. On the other hand, the thermal performance of the DX HVAC system's air-cooled condenser deteriorates in hot climates. Therefore, to improve the DX HVAC system and air cooled condenser thermal performance simultaneously, this study proposes and analyzes a novel integrated multistage heat recovery system that first recovers the... 

    Performance evaluation of different configurations of solar humidification-dehumidification desalination system with subsurface condenser

    , Article Energy Conversion and Management ; Volume 269 , 2022 ; 01968904 (ISSN) Asgari, B ; Bizhani, M ; Hakkaki Fard, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The solar humidification-dehumidification desalination system with a subsurface condenser is a promising renewable energy-based desalination system. This desalination system is particularly suitable for condensation irrigation in greenhouses, especially where conventional energy sources are limited. A computational model of the system comprising a horizontal solar film evaporator and a subsurface condenser is developed. A previously proposed hybrid analytical–numerical model for horizontal ground heat exchangers is modified for the subsurface condenser. An experimental setup of the subsurface condenser is also built and used to verify the developed model of the subsurface condenser. The...