Loading...
Search for: anodic-oxides
0.006 seconds
Total 30 records

    Anodizing behavior and electrochemical evaluation of accumulative roll bonded Al and Al-SiC composite

    , Article Surface and Coatings Technology ; Volume 408 , 2021 ; 02578972 (ISSN) Ebadi, M ; Alishavandi, M ; Paydar, M. H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Accumulative roll bonded (ARBed) AA1050 and Al-2 vol% SiCp (AMC) samples were anodized in an H2SO4 electrolyte to improve corrosion resistance. The SEM images revealed that the anodic oxide's morphology is significantly dependent on the microstructure of the ARBed bare samples, owing to high internal energy that accelerates Al consumption during anodizing process. Potentiodynamic polarization measurements and EIS evaluation showed that anodic oxide improves the corrosion resistance of both ARBed AA and AMC samples; however, the electrochemical behavior of the processed samples changed due to the formation of a complex oxide structure comprising of twisted pore channels and attack routes. ©... 

    On the growth sequence of highly ordered nanoporous anodic aluminium oxide

    , Article Materials and Design ; Volume 27, Issue 10 , 2006 , Pages 983-988 ; 02613069 (ISSN) Ghorbani, M ; Nasirpouri, F ; Iraji zad, A ; Saedi, A ; Sharif University of Technology
    Elsevier Ltd  2006
    Abstract
    Anodic aluminium oxide films were fabricated by well known two-step anodizing process in oxalic acid electrolyte. The ordering characteristics (ordered pore domains, average pore diameter size and through-pore arrangement) of anodic aluminium oxide films, obtained in different growth sequences, were identified by microscopic analysis such as ex situ contact-mode atomic force microcopy and scanning electron microscopy. Flattened areas in which some pits are seen mostly cover the electropolished surface of aluminium. Single anodizing of aluminium produces a broad distribution of nanopore size, whereas induces a highly ordered hemispherical pattern, which plays the ordered nucleation sites for... 

    Aluminum Production by Alumina Electrolysis Method with Using Inconel 617 Inert Anode

    , M.Sc. Thesis Sharif University of Technology Vakil, Mohammad Mahdi (Author) ; Halali, Mohammad (Supervisor)
    Abstract
    In this study, the performance of Inconel 617 anode as an inert anode in aluminum electrolysis process was studied. To carry out the research, first, an electrolyte was produced using NaF, KF, AlF3 and Al2O3 with a molar ratio of sodium and potassium fluoride to aluminum fluoride of 1.33. Next, aluminum electrolysis cell was made using Inconel 617 anode and cathode and the aforementioned electrolyte. To evaluate the Inconel 617 anode, the performance of the electrolysis cell in different conditions of temperature, anode-cathode distance, and excess potential was investigated in a period of one hour. Using anode mass measurements, cell potential and current density and scanning electron... 

    Fabrication of self-organised highly ordered titanium oxide nanotube arrays by anodic oxidation and characterisation

    , Article International Journal of Nanomanufacturing ; Volume 5, Issue 3-4 , 2010 , Pages 297-309 ; 17469392 (ISSN) Mohammadpour, R ; Ahadian, M. M ; Iraji Zad, A ; Taghavinia, N ; Dolati, A. G ; Sharif University of Technology
    2010
    Abstract
    Self-organised and vertically oriented titanium oxide nanotube array (TNTA) has been synthesised by potentiostat anodisation of Ti foil in fluoride-based electrolyte. By varying the anodisation voltage from 8 V to 24 V it was possible to gradually change the topologies of nanotubes. The size of TNTAs was measured using SEM images and also determined based on a non-destructive optical method. In addition, photoelectrochemical properties of nanotubular TiO2/Ti electrodes were examined by anodic photocurrent response, potentiodynamic polarisation measurements and electrochemical impedance spectroscopy. A general equivalent circuit model was proposed for photoelectrochemical system consists of... 

    Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template

    , Article Materials Chemistry and Physics ; Volume 91, Issue 2-3 , 2005 , Pages 417-423 ; 02540584 (ISSN) Saedi, A ; Ghorbani, M ; Sharif University of Technology
    2005
    Abstract
    Anodic aluminum oxide (AAO) was used as a template to prepare highly ordered Ni-Fe-Co alloy nanowire arrays. This membrane was fabricated with two-step anodizing method. It is found that there is an optimum barrier thickness to obtain a successful electrodeposition in pores of AAO. The thickness of barrier layer can be modified by additional electrochemical process after completing the anodizing step. Barrier layer thinning can create a rooted structure at the bottom side of the AAO pores and the electrodeposited nanowire arrays. The triple Ni-Fe-Co alloy was deposited in AAO membrane by ac voltage in a simple sulfate bath. The composition of nanowires shows anomalous deposition features... 

    Fabrication and Photoelectrochemical Characterization of Ordered Nanotube Arrays of TiO2 for Solar Cell Application

    , Ph.D. Dissertation Sharif University of Technology Mohammadpour, Raheleh (Author) ; Iraji zad, Aazam (Supervisor) ; Dolati, Abolghasem (Supervisor) ; Taghavinia, Neima (Co-Advisor)
    Abstract
    In this research we focus on study and fabrication of ordered nanotube arrays of titanium oxide and their applications in photoelectrochemical cell. Nanotubular films of titanium oxide have been fabricated using anodization method. Short-length nanotubes, less than one micrometer, have been synthesized in aqueous electrolyte containing deionized water, hydrofluoric acid and phosphoric acid. To get Micron-length nanotubes, we have employed organic electrolyte containing ethylene glycol, deionized water and fluoride ammonium. After fabrication, the photo-catalytic activity of nanotubular structures was evaluated by measuring the rate of degradation of in methylene blue aqueous solution. The... 

    A comparative study of the electrooxidation of ethylene glycol on transition metal electrodes in alkaline solution

    , Article Journal of New Materials for Electrochemical Systems ; Volume 15, Issue 4 , 2012 , Pages 255-263 ; 14802422 (ISSN) Danaee, I ; Jafarian, M ; Shahnazi Sangachin, A. A ; Gobal, F ; Sharif University of Technology
    2012
    Abstract
    Electrodes made of group VIII and IB metals were examined for their redox process and electrocatalytic activities towards the oxidation of ethylene glycol in alkaline solutions. The method of cyclic voltammetery (CV) and Open circuit potentials measurement (OCP) was employed. It is found that considerable electrooxidation current are observed for silver and copper but lower anodic overpotential for oxidation is obtained for gold and platinum. Oxide layer produced on the surface of all electrodes in alkaline solution under anodic scan participates in ethylene glycol electrooxidation. Oxidation current observed in the reverse scans for platinum and gold are higher than those observed in... 

    A non-catalytic vapor growth regime for organohalide perovskite nanowires using anodic aluminum oxide templates

    , Article Nanoscale ; Volume 9, Issue 18 , 2017 , Pages 5828-5834 ; 20403364 (ISSN) Tavakoli, M. M ; Waleed, A ; Gu, L ; Zhang, D ; Tavakoli, R ; Lei, B ; Su, W ; Fang, F ; Fan, Z ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    In this work, a novel and facile synthesis process to fabricate single crystalline organometal halide perovskite nanowires has been successfully developed. Nanowires were grown in a high density ordered array from metal nanoclusters inside anodic aluminum oxide templates using a non-catalytic chemical vapor deposition method. Specifically, perovskite NWs were grown as a result of the reaction between methylammonium iodide (MAI) and the Pb/Sn (Pb or Sn) metal in anodic aluminum oxide templates under optimal conditions. The characterization results show that there is a reaction zone at the interface between the perovskite material and metal, at the bottom of the anodic aluminum oxide... 

    Modification of nanostructured anodized aluminum coatings by pulse current mode

    , Article Surface and Coatings Technology ; Volume 278 , 2015 , Pages 48-55 ; 02578972 (ISSN) Mohammadi, I ; Afshar, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this study, the effects of pulse current mode on corrosion resistance and mechanical properties of anodized coatings were explored. Thickness and hardness measurements, polarization and electrochemical impedance spectroscopy were employed to take mechanical and corrosion behaviors of the anodized coatings into consideration. Also, field-emission scanning electron microscopy (FE-SEM) was utilized to characterize the surface morphology of the coatings. It was shown that in short anodizing times, coating thickness is controlled by the heat concentrated on coating. Although at prolonged anodizing times, the coating thickness is affected by average current density. Hardness measurements showed... 

    Diffusion-controlled growth model for electrodeposited cobalt nanowires in highly ordered aluminum oxide membrane

    , Article ECS Transactions, 25 April 2010 through 30 April 2010, Vancouver, BC ; Volume 28, Issue 17 , 2010 , Pages 13-25 ; 19385862 (ISSN) ; 9781607681939 (ISBN) Ghahremaninezhad, A ; Dolati, A ; Sharif University of Technology
    2010
    Abstract
    This work studies the electrochemical growth behavior of cobalt nanowires in highly ordered aluminum oxide membrane. Considering the electrodeposition of metallic nanowires, cation concentration profile in each nano pore was calculated. With assumption of linear diffusion zone on the growing surface of nanowires, a modified Cottrell equation was evaluated. To confirm the model, the Co nanowires were electrodeposited into porous anodic aluminum oxide (AAO) templates and the mechanism of deposition was studied. Comparing the results of model and the experiments has proved the accuracy of the model. Also, it was observed that the growth of the Co nanowires was controlled mainly by diffusion... 

    Electrochemical oxidation of saccharose on copper (hydr)oxide-modified electrode in alkaline media

    , Article Cuihua Xuebao/Chinese Journal of Catalysis ; Volume 31, Issue 11 , 2010 , Pages 1351-1357 ; 02539837 (ISSN) Jafarian, M ; Rashvand Avei, M ; Danaee, I ; Gobal, F ; Mahjani, M. G ; Sharif University of Technology
    2010
    Abstract
    A stable copper (hydr)oxide-modified electrode was prepared in 0.5 mol/L NaOH solution by cyclic voltammetry in the range of -250 to 1000 mV. It can be used for electrochemical studies in the range of -250 to 1000 mV without interfering peaks because there is no oxidation of copper. During an anodic potential sweep, the electro-oxidation of saccharose on Cu occurred by the formation of CuIII and this reaction also occurred in the early stages of the reversed cycle until it is stopped by the negative potentials. A mechanism based on the electro-chemical generation of CuIII active sites and their subsequent consumption by saccharose was proposed, and the rate law and kinetic parameters were... 

    Selective voltammetric determination of d-penicillamine in the presence of tryptophan at a modified carbon paste electrode incorporating TiO2 nanoparticles and quinizarine

    , Article Journal of Electroanalytical Chemistry ; Volume 644, Issue 1 , Jan , 2010 , Pages 1-6 ; 15726657 (ISSN) Mazloum Ardakani, M ; Beitollahi, H ; Taleat, Z ; Naeimi, H ; Taghavinia, N ; Sharif University of Technology
    2010
    Abstract
    A carbon paste electrode (CPE) chemically modified with TiO2 nanoparticles and quinizarine (QZ) was used as a selective electrochemical sensor for the simultaneous determination of minor amounts of d-penicillamine (D-PA) and tryptophan (Trp). This modified electrode showed very efficient electrocatalytic activity for anodic oxidation of both d-PA and Trp. Substantial decreases of anodic overpotentials for both compounds made this analysis possible. Results of square wave voltammetry (SWV) using this modified electrode showed two well-resolved anodic waves for the oxidation of d-PA and Trp, which makes the simultaneous determination of both compounds possible. The peak potential for the... 

    A preliminary study of the electro-oxidation of l-ascorbic acid on polycrystalline silver in alkaline solution

    , Article Journal of Power Sources ; Volume 195, Issue 1 , 2010 , Pages 165-169 ; 03787753 (ISSN) Majari Kasmaee, L ; Gobal, F ; Sharif University of Technology
    2010
    Abstract
    Electrochemical oxidation of l-ascorbic acid on polycrystalline silver in alkaline aqueous solutions is studied by cyclic voltammetry (CV), chronoamperometry (CA) and impedance spectroscopy (IS). The anodic electro-oxidation starts at -500 mV versus SCE and shows continued anodic oxidation in the cathodic half cycle in the CV regime signifying slowly oxidizing adsorbates. Diffusion coefficient of ascorbate ion measured under both voltammetric regimes is around 1.4 × 10-5 cm2 s-1. Impedance spectroscopy measures the capacitances associated with double layer and adsorption around 50 μF cm-2 and 4 mF cm-2 as well as the adsorption and decomposition resistances (rates). © 2009 Elsevier B.V. All... 

    Effect of pulse current parameters on the mechanical and corrosion properties of anodized nanoporous aluminum coatings

    , Article Materials Chemistry and Physics ; Volume 183 , 2016 , Pages 490-498 ; 02540584 (ISSN) Mohammadi, I ; Ahmadi, Sh ; Afshar, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this study, the effects of pulse current parameters on corrosion resistance and mechanical properties of anodized coatings were evaluated. Hardness measurements, polarization and electrochemical impedance spectroscopy tests were employed to investigate the mechanical properties and corrosion behavior of these coatings. Also, field emission scanning electron microscopy (FE-SEM) was used to analyze the surface morphology and microstructure of the coatings. It was found that the properties of anodized coatings were dependent on various parameters, among which, time, temperature and pulse current parameters (current density limit, frequency and duty cycle) were optimized. Analysis of Variance... 

    Hydroxyapatite based and anodic titania nanotube biocomposite coatings: fabrication, characterization and electrochemical behavior

    , Article Surface and Coatings Technology ; Volume 287 , 2016 , Pages 67-75 ; 02578972 (ISSN) Ahmadi, S ; Mohammadi, I ; Sadrnezhaad, S. K ; Sharif University of Technology
    Elsevier  2016
    Abstract
    The main challenges of biological implants are suitable strength, adhesion, biocompatibility and corrosion resistance. This paper discusses fabrication, characterization and electrochemical investigation of anodized Ti6Al4V without and with a hydroxyapatite (HA) layer, HA/TiO2 nanoparticles (NPs) and HA/TiO2 nanotubes (HA/anodized). X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS) were used to characterize and compare properties of different samples. Dense HA with uniform distribution and 12.8 ± 2 MPa adhesive strength enhanced to 19.2 ± 4 MPa by the addition of TiO2 nanoparticles and enhanced to 23.1 ± 4 MPa by the... 

    Synthesis of titanium oxide nanotubes and their decoration by MnO nanoparticles for biomedical applications

    , Article Ceramics International ; Volume 45, Issue 15 , 2019 , Pages 19275-19282 ; 02728842 (ISSN) Esmaeilnejad, A ; Mahmoudi, P ; Zamanian, A ; Mozafari, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this study, apatite formation ability on TiO2 nanotubes (TNTs) synthesized by anodizing process were compared with TNTs decorated by MnO nanoparticles. The MnO nanoparticles used for decoration process were fabricated via thermal decomposition method. At first, it was strived to find the optimal condition of anodizing process and the effect of applied voltages (15 V, 20 V, and 25 V) and process times (15 min, 20 min, and 25 min) on the diameter of the synthesized TNTs was investigated. Results of microscopic characterizations showed that the completely uniform structure of nanotubes with a diameter in the range of about 100–130 nm was achieved after 20 min of anodizing process at an... 

    Influence of PEO and mechanical keying on the strength of AA 5052 alloy/polypropylene friction stir spot welded joints

    , Article International Journal of Adhesion and Adhesives ; Volume 92 , 2019 , Pages 65-72 ; 01437496 (ISSN) Aliasghari, S ; Skeldon, P ; Zhou, X ; Ghorbani, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A study has been carried out of the effect of plasma electrolytic oxidation (PEO)on the strength of AA 5052 alloy/polypropylene joints prepared using friction stir spot welding (FSSW). The joint strengths were determined using lap-shear tests and failure modes were investigated using scanning electron microscopy. Comparisons were made between control joints prepared with the alloy in the as-rolled condition or the as-rolled condition with a mechanical key and with PEO-treated alloy, with or without a mechanical key. Mechanical keying alone, provided by infiltration of polymer into holes of either 3 or 4.5 mm diameter drilled in the alloy, yielded enhancements of the joint strength by a... 

    Effect of an anodizing pre-treatment on AA 5052 alloy/polypropylene joining by friction stir spot welding

    , Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 245 , 2019 , Pages 107-112 ; 09215107 (ISSN) Aliasghari, S ; Skeldon, P ; Zhou, X ; Hashimoto, T ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A study has been carried out of the effect of an anodizing pre-treatment in a sulphuric acid electrolyte on the strength of AA 5052 alloy/polypropylene joints prepared using friction stir spot welding. Lap-shear tests were used to determine the joint strength. Comparisons were made with joints pre-treated using sand blasting. The failed specimens were examined by scanning and transmission electron microscopy. Anodizing improved the strength of the joints by a factor of about 6 compared with sandblasting. For the anodizing pre-treated joints, melted polymer infiltrated deeply within the nanoporous anodic film, forming a strong polymer-film bond. Joint failure occurred by ductile tearing of... 

    Facile synthesis of petal-like NiCo/NiO-CoO/nanoporous carbon composite based on mixed-metallic MOFs and their application for electrocatalytic oxidation of methanol

    , Article Applied Catalysis B: Environmental ; Volume 244 , 2019 , Pages 802-813 ; 09263373 (ISSN) Rezaee, S ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Porous carbon template decorated with mixed transition metals/metal oxides with tunable architecture is becoming increasingly important and attractive as a kind of novel electrode materials. In this way, mixed-metallic metal-organic frameworks (MOFs) provide an opportunity for fabrication of homogeneous mixed metals/metal oxides distribution in the porous carbon frame without any carbon precursor additive. Also, structures, dimensions and electrochemical performance of MOFs can be readily manipulated by simply tuning the metals molar ratio. In this study, we demonstrate the design and fabrication of petal-like NiCo/NiO-CoO metal/metal oxides with a rational composition embedded in 3D... 

    Electrophoretic encapsulation for slow release of vancomycin from perpendicular TiO2 nanotubes grown on Ti6Al4V electrodes

    , Article Materials Research Express ; Volume 6, Issue 12 , 2019 ; 20531591 (ISSN) ; https://iopscience.iop.org/article/10.1088/2053-1591/ab6c98 Riahi, Z ; Ahmadi Seyedkhani, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Ordered perpendicular TiO2 nanotubes (TNT) with 405 to 952 nm length and 60 to 90 nm diameter were grown via 40 to 120 min anodization of Ti6Al4V flat substrates. The samples were called TNT-40, -60, -80, -100, and -120. Vancomycin was loaded on the bare and anodized electrodes by separate immersion and electrophoretic (EP) deposition procedures. EP loading resulted in storage capacity of 5221.86 μg cm-2 for TNT-80 which was much higher than 1036.75 μg cm-2 of immersed sample. Drug release comprised of three stages: (i) burst release (78% for the bare, and 23% for the TNT-80 sample), (ii) gradual transport (21% for the bare, and 64% for the TNT-80 sample), and (iii) equilibrium. Transfer...