Loading...
Search for: bioglass
0.006 seconds

    Double layer bioglass-silica coatings on 316L stainless steel by sol-gel method

    , Article Ceramics International ; Volume 40, Issue 1, Part A , January 2014 , Pages 993–1000 Pourhashem, S ; Afshar, A ; Sharif University of Technology
    Abstract
    The application of bioglass coatings on metallic implants provides link between bone and materials and prevents corrosion of metallic implants in body fluid. Therefore, in this research, 45S5 bioglass-silica coatings on 316L stainless steel were prepared by the sol-gel method and were characterized by different techniques. According to X-ray diffraction (XRD) results, by sintering 45S5 bioglass at 600 C for 5 h, coatings containing both amorphous phase and Na2Ca2Si3O9 crystalline phase were obtained. Scanning electron microscopy (SEM) results showed that coatings prepared via appropriate sol aging and substrate preparations are crack-free. Potentiodynamic polarization tests in simulated body... 

    Synthesis of Antibiotic-eluting Chitosan-based Composite Coating by Electrophoretic Deposition for Bone Implants

    , M.Sc. Thesis Sharif University of Technology Bakhshi, Zahra (Author) ; Simchi, Abdol Reza (Supervisor) ; Bagheri, Reza (Supervisor)
    Abstract
    Drug-eluting bone implant coatings is a new era that has gained a lot of attention in recent years. In this matter, drug is loaded in the coating and local and targeted release of the drug results in preventing the side effects of implantation and increasing the healing process of the patient. The aim of this project was to synthesis the antibiotic eluting chitosan-based composite using electrophoretic deposition for bone implant coating. By using electrophoretic deposition chitosan and chitosan-bioglass composite coatings were synthesized. Then the probability of loading of drug into coating by using electrophoretic deposition was evaluated and by using this process chitosan and... 

    Electrophoretic Deposition of Alginate-Bioglass-Nanodiamond Nanocomposites and Evolution of their Bioactivity

    , M.Sc. Thesis Sharif University of Technology Mansoorianfar, Mojtaba (Author) ; Simchi, Abdollreza (Supervisor)
    Abstract
    Recently, diamond nanoparticles have attracted interest for biomedical applications such as drug delivery, targeted cancer therapies, fabrication of tissue scaffolds and biosensors. In the present work, elecrophoretic deposition (EPD) of nanodiamond-bioactive glass-alginate nanocomposite was studied. In vitro bioactivity and biocompatibility of the nanocomposite were evaluated in simulated body fluid (SBF) and by MTT assay. The EPD process was performed under different conditions in order to obtain a uniform coating on the surface of 316L stainless steel substrate. The stability of the suspension was determined via optical sedimentation method and zeta potential analysis. It was found that... 

    Design and Fabrication of Biodegradable Polymeric Scaffold with nano-Bioglass for Osteoblast cell Growth

    , M.Sc. Thesis Sharif University of Technology Razaghzadeh Bidgoli, Mina (Author) ; Vossoughi, Manouchehr (Supervisor) ; Alemzadeh, Iran (Supervisor) ; Tamjid Shabesteri, Elnaz (Co-Advisor)
    Abstract
    Treatment of critical-size bone defects caused by sport injuries, accidents, trauma, infection, and osteoporosis remains a major clinical challenge. In order to repair or regenerate large bone defects, bioactive three-dimensional scaffolds play a key role due to their multilevel porous structure, high surface area, enhanced mass transport and diffusion. Many studies reported that macropore diameters greater than 500 µm can lead to vascularized bone tissue. In this study, a hierarchically porous composite scaffold was prepared. Hierarchically porous silk fibroin- bioactive glass composite and fibroin scaffold were fabricated with controlled architecture and interconnected structure with... 

    Synthesis and characterization of sol-gel derived hydroxyapatite-bioglass composite nanopowders for biomedical applications

    , Article Journal of Biomimetics, Biomaterials, and Tissue Engineering ; Volume 12, Issue 1 , 2012 , Pages 51-57 ; 16621018 (ISSN) Adibnia, S ; Nemati, A ; Fathi, M. H ; Baghshahi, S ; Sharif University of Technology
    2012
    Abstract
    The main purpose of this study is to prepare and characterize hydroxyapatite (HA)-10%wt bioglass (BG) composite nanopowders and its bioactivity. Composites of hydroxyapatite with synthesized bioglass are prepared at various temperatures. Suitable calcination temperature is chosen by evaluating of the phase composition. X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM) techniques are utilized to characterize the prepared nanopowders. The bioactivity of the prepared composite samples is evaluated in an in vitro study by immersion of samples in simulated body fluid (SBF) for predicted time. Fourier transformed infrared (FTIR) spectroscopy and... 

    A study of the electrophoretic deposition of Bioglass® suspensions using the Taguchi experimental design approach

    , Article Journal of the European Ceramic Society ; Volume 30, Issue 14 , October , 2010 , Pages 2963-2970 ; 09552219 (ISSN) Pishbin, F ; Simchi, A ; Ryan, M. P ; Boccaccini, A. R ; Sharif University of Technology
    2010
    Abstract
    This paper presents a study of the Taguchi design method to optimise the rate of electrophoretic deposition (EPD) of Bioglass® particles from aqueous suspensions. The effect of Bioglass® concentration, pH and electric field was investigated. An orthogonal array of L16 type with mixed levels of the control factors was utilized. Multivariate analysis of variance (MANOVA) and regression analysis based on the partial least-square method were used to identify the significant factors affecting the deposition rate and its stability during constant-voltage EPD. It was found that the pH of the suspension significantly influences the deposition rate whereas the applied electric field has the smallest... 

    Properties, crystallization mechanism and microstructure of lithium disilicate glass-ceramic

    , Article Journal of Non-Crystalline Solids ; Volume 356, Issue 4-5 , 2010 , Pages 208-214 ; 00223093 (ISSN) Goharian, P ; Nemati, A ; Shabanian, M ; Afshar, A ; Sharif University of Technology
    Abstract
    In this study, lithium disilicate glass-ceramic in the TiO2-ZrO2-Li2O-CaO-Al2O3-SiO2 system was investigated for dentistry applications by incorporation of P2O5 and Nb2O5 as nucleation agent. The influence of the particles size (nano and submicron size) and nucleating agents on the crystalline phases, microstructure, crystallization mechanism and mechanical properties were investigated. Our data indicated that in ceramic glass with nano and submicron P2O5, the main crystalline phase was lithium disilicate. The results also showed that change of P2O5 particle's size had significant effect on the crystalline phases and microstructure. By replacement of submicron P2O5 with submicron Nb2O5,... 

    Pressure-engineered electrophoretic deposition for gentamicin loading within osteoblast-specific cellulose nanofiber scaffolds

    , Article Materials Chemistry and Physics ; Volume 272 , 2021 ; 02540584 (ISSN) Rahighi, R ; Panahi, M ; Akhavan, O ; Mansoorianfar, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Multi-component nanocomposite thin films (composed of cellulose nanofiber (CNF), alginate, bioglass nanoparticles (BG NPs) and gentamicin) were prepared by using cathodic electrophoretic deposition (EPD) under different isostatic pressures of 10−2 mbar (LP), atmospheric (AP), and 5 bar (HP). According to thermal gravity analysis, larger amounts of CNF and alginate could be deposited on the surface at the AP condition in comparison with the LP and HP conditions. On the other hand, higher amounts of the BG NPs could be deposited at the LP condition as compared to the other conditions. The drug (gentamicin) loading/releasing of the samples prepared at the HP condition was found to be higher... 

    Electrophoretic deposition of chitosan/45S5 Bioglass® composite coatings for orthopaedic applications

    , Article Surface and Coatings Technology ; Volume 205, Issue 23-24 , 2011 , Pages 5260-5268 ; 02578972 (ISSN) Pishbin, F ; Simchi, A ; Ryan, M. P ; Boccaccini, A. R ; Sharif University of Technology
    2011
    Abstract
    This article presents experimental results on the electrophoretic deposition (EPD) of bioresorbable chitosan/45S5 Bioglass® composite coatings for orthopaedic implants based on the Taguchi design of experiments (DOE) approach. The influence of EPD parameters including Bioglass® concentration, electric voltage and deposition time on deposition yield was studied by an orthogonal Taguchi array of L18 type. Multivariate analysis of variance (MANOVA) and regression analysis based on the partial least-square method were used to identify the significant factors affecting the deposition yield and its stability during constant-voltage EPD. The coatings were characterised by high resolution scanning...