Loading...
Search for: blade
0.007 seconds
Total 168 records

    Optimum kinetic and gas hold up distribution study in an NDMA hydrogenation reactor

    , Article 18th International Congress of Chemical and Process Engineering, CHISA 2008, Prague, 24 August 2008 through 28 August 2008 ; 2008 Gorji, M ; Kazemeini, M ; Sharif University of Technology
    2008
    Abstract
    Unsymmetrical Dimethyl hydrazine (UDMH) is used as stabilizer, fuel promoter, chemical in photography, and liquid fuel for fighter jet engines. Catalytic liquid phase hydrogenation of nitrosodimethylamine (NDMA) is one of the most efficient methods for the production of UDMH. Hydrogenation of NDMA to UDMH using a commercial 5% Pd/C catalyst in aqueous solution of NDMA was studied under constant temperature at 40°-70°C, ≤ 15 bar, and NDMA concentrations of 40-70 wt %. The effects of temperature, pressure, and NDMA concentration on NDMA conversion and yield of UDMH product in presence of undesired Dimethylamine (DMA) were studied. At NDMA concentration of > 50 wt %, the UDMH yield was < 0.89,... 

    On the existence of chaotic circumferential waves in spinning disks

    , Article Chaos ; Volume 17, Issue 2 , 2007 ; 10541500 (ISSN) Angoshtari, A ; Jalali, M. A ; Sharif University of Technology
    American Institute of Physics Inc  2007
    Abstract
    We use a third-order perturbation theory and Melnikov's method to prove the existence of chaos in spinning circular disks subject to a lateral point load. We show that the emergence of transverse homoclinic and heteroclinic points lead, respectively, to a random reversal in the traveling direction of circumferential waves and a random phase shift of magnitude π for both forward and backward wave components. These long-term phenomena occur in imperfect low-speed disks sufficiently far from fundamental resonances. © 2007 American Institute of Physics  

    Reliability and Life Assessment of Gas Turbine Blades Using Modal Analysis

    , M.Sc. Thesis Sharif University of Technology Heidari, Sepehr (Author) ; Zabihollah, Abolghasem (Supervisor) ; Behzad, Mehdi ($item.subfieldsMap.e)
    Abstract
    Rotary machines including gas turbines have been widely used in many industries like gas reducing pressure stations and power plants. Blades are important components of gas turbines which are subjected to failure due to different kind of damages like crack occurrence. There are various reasons for crack occurrence and its propagation in blades. Presence of crack in the blades may lead to major failure, which in turn, result in emergency shutdown of the system. Therefore condition monitoring is employed to check the possibility of failures. In recent years, condition monitoring techniques have been developed to prevent unnecessary shutdown of the systems. The present thesis aims to... 

    Improvement of grain structure and mechanical properties of a land based gas turbine blade directionally solidified with liquid metal cooling process

    , Article Materials Science and Technology ; Volume 24, Issue 1 , 2008 , Pages 100-106 ; 02670836 (ISSN) Kermanpur, A ; Mehrara, M ; Varahram, N ; Davami, P ; Sharif University of Technology
    2008
    Abstract
    The manufacturing process of a directionally solidified (DS) IN738LC turbine blade, produced with the liquid metal cooling (LMC) process was improved based on process modelling. The improvement involved varying the system dimensions in the baffle area and optimising the mould thickness, design and the withdrawal parameters. The grain structure of the DS blades produced exhibits a well defined <001> texture with a few stray grains near the blade top compared to the previous design. Some blades were given to a two stage heat treatment followed by tension tests at 25 and 650°C as well as creep tests at 152 MPa/982°C and 340 MPa/850°C. The yield and tensile strength of improved DS blades were... 

    Effect of surface contamination on the performance of a section of a wind turbine blade

    , Article 45th AIAA Aerospace Sciences Meeting 2007, Reno, NV, 8 January 2007 through 11 January 2007 ; Volume 19 , 2007 , Pages 13026-13036 ; 1563478900 (ISBN); 9781563478901 (ISBN) Soltani, M. R ; Birjandi, A. H ; Sharif University of Technology
    2007
    Abstract
    A series of low speed wind tunnel tests on a section of a 660 Kw wind turbine blade which is under constructer were conducted to examine the effects of distributed surface contamination on its performance characteristics. At first model was tested in the clean condition and after that it was tested with tree different types of roughness. The data shows that this particular airfoil is very sensitive to the applied surface roughness. For the contaminated model the roughness, 0.5mm height was distributed over the entire upper surface of the airfoil such that the distribution pattern was denser in the vicinity of the leading edge and thinner in the trailing edge area. Statistical data show that... 

    Effects of reduced frequency on the performance of a wind turbine blade in the low and high turbulent unsteady flow

    , Article 25th AIAA Applied Aerodynamics Conference, 2007, Miami, FL, 25 June 2007 through 28 June 2007 ; Volume 2 , 2007 , Pages 877-882 ; 10485953 (ISSN); 1563478986 (ISBN); 9781563478987 (ISBN) Soltani, M. R ; Amiralaei, M. R ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2007
    Abstract
    An extensive experimental study is conducted to investigate the effects of reduced frequency on a harmonically pitching wing where its cross section is used in a 660 kW wind turbine under construction in Iran. The corresponding lift coefficient and real time pressure signatures at three sections of the model at various reduced frequencies are examined. The test covers a wide range of angles of attack at prestall, stall, and deep stall regions. Pressure distributions at tip, middle, and root sections of the wing were recorded and from these distributions the lift coefficients are computed. The results show great role of the reduced frequency in altering the maximum lift coefficients, lift... 

    A new design for tip injection in transonic axial compressors

    , Article 2006 ASME 51st Turbo Expo, Barcelona, 6 May 2006 through 11 May 2006 ; Volume 6 PART A , 2006 , Pages 39-47 ; 079184241X (ISBN); 9780791842416 (ISBN) Beheshti, B. H ; Ghorbanian, K ; Farhanieh, B ; Teixeira, J. A ; Ivey, P. C ; Sharif University of Technology
    2006
    Abstract
    This paper presents a state of the art design for the blade tip injection. The design includes the means, to inject high-pressure gas jet directly into a circumferential casing groove formed in the shroud adjacent to the blade tip. The casing groove is positioned over the blade tip and exceeds 30% of the blade axial chord beyond the impeller to both upstream and downstream directions. In order to validate the multi block model used in the tip gap region, main flow characteristics are verified with the experimental data for smooth casing with a design clearance of 0.5% span. Three arbitrary mass flow rates (1.75%, 2.45%, and 4.35% of choked mass flow) have been studied. The results indicate... 

    Contamination effects on the performance of a wind turbine blade section

    , Article 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference Proceedings, San Francisco, CA, 5 June 2006 through 8 June 2006 ; Volume 4 , 2006 , Pages 2801-2805 ; 1563478153 (ISBN); 9781563478154 (ISBN) Soltani, M. R ; Birjandi, A. H ; Sharif University of Technology
    2006
    Abstract
    A series of low speed wind tunnel tests on a section of a 660 Kw wind turbine blade were conducted to examine the effects of distributed surface contamination on its performance. The airfoil was a section of a wind turbine blade under construction. The performance of the section was measured in the following conditions: 1. Clean airfoil 2. Two types of zigzag roughness 3. Strip tape 4. Distributed contamination roughness Our preliminary data shows that the airfoil is very sensitive to the applied surface roughness. For the contamination model the roughness, 0.5mm height, is distributed over the entire upper surface of the airfoil. By putting the contamination roughness on the airfoil the... 

    Experimental investigation of blade number and design effects for a ducted wind turbine

    , Article Renewable Energy ; Volume 105 , 2017 , Pages 334-343 ; 09601481 (ISSN) Ahmadi Asl, H ; Kamali Monfared, R ; Rad, M ; Sharif University of Technology
    Abstract
    Over the recent decades, many different ducted turbines have been designed to augment efficiency of wind turbines. The design and number of blades are the most important parameters to optimize efficiency of wind turbines. In this paper, effects of design, number and attack angles of blades on rotational speed are experimentally studied in a duct which increases wind velocity up to 2.46 times numerically and 2.32 times experimentally as great as far-field flow. In order to realize this, 3 different types of aerodynamic blades were designed and then, 2-bladed, 3-bladed and 4-bladed impellers were created by these blades; finally, 9 impellers were built on aggregate. The rotational speed of... 

    Starting improvement of micro-wind turbines operating in low wind speed regions

    , Article International Journal of Green Energy ; Volume 14, Issue 11 , 2017 , Pages 868-877 ; 15435075 (ISSN) Amir Nazmi Afshar, P ; Gooya, M ; Hosseini, S. V ; Pourrajabian, A ; Sharif University of Technology
    Abstract
    The study deals with the design and optimization of external and internal geometry of micro-wind turbines blades. A specified objective function which consists of the power coefficient and the starting time was defined and the genetic algorithm optimization technique in conjunction with the blade-element momentum theory was adopted to find the geometry of the blades including the distributions of the chord, the twist angle and also the shell thickness. Moreover, the allowable stress of the blades was considered as a constraint to the objective function. Results show that a reasonable compromise is achievable such that the starting time of the blades reduces noticeably in return for a small... 

    Active Control of Edgewise Vibrations in Wind Turbine Blade by Optimization of the Number and Locations of the Intermediate Actuators

    , M.Sc. Thesis Sharif University of Technology Pishbahar, Baher (Author) ; Moradi, Hamed (Supervisor)
    Abstract
    Vibrations in HAWT reduce their efficiency and increase maintenance costs. In this paper, the blade edgewise vibrations are reduced by using several actuators in different parts of the wind turbine blade and optimization of the number and locations of actuators. The wind turbine blade dynamic behavior is investigated by using dynamic modeling. The actuators are trusses that are located inside each blade and apply control force to different parts of the blade. Active control force is applied to reduce edgewise vibrations. The designed controller is applied and simulated on NREL 5MW wind turbine. By applying the controller, the edgewise vibrations of wind turbine blades are significantly... 

    Experimental and numerical investigation on the effect of blade number on vibrations of industrial fans

    , Article COMADEM 2010 - Advances in Maintenance and Condition Diagnosis Technologies Towards Sustainable Society, Proc. 23rd Int. Congr. Condition Monitoring and Diagnostic Engineering Management, 28 June 2010 through 2 July 2010 ; February , 2010 , Pages 473-480 ; 9784883254194 (ISBN) Behzad, M ; Ebrahimi, A ; Oskouie, S. N ; Massoumi, H ; Sharif University of Technology
    Abstract
    In this paper, the effect of blade number on the vibration behavior of industrial fans has been studied experimentally and numerically. Two similar industrial fans with similar specifications and only different blade numbers were chosen in a plant. The vibration levels were measured on these fans and the results revealed that the blade passage phenomenon is the main cause of vibrations on both fans. Both fans and their structures were modeled numerically and the performance characteristics, vibratory forces and vibration response of structure were calculated. The results showed that the number of blade has small effect on vibratory forces compared to the performance characteristics. The... 

    Measurements of velocity field in the wake of an oscillating wind turbine blade

    , Article Aeronautical Journal ; Volume 114, Issue 1158 , August , 2010 , Pages 493-504 ; 00019240 (ISSN) Soltani, M. R ; Mahmoudi, M ; Sharif University of Technology
    2010
    Abstract
    A series of tests were carried out to study the unsteady wake behaviour behind an aerofoil which is a section of a wind-turbine blade. The model is oscillated in pitch about its quarter chord axis at various reduced frequencies, amplitudes, and mean angles-of-attack. Instantaneous and mean velocity profiles were obtained using total and static pressure at 35 vertically aligned points behind the aerofoil via two similar rakes. The rakes were located at a distance of 1.5 chord length behind the model. An estimation of the real time and average variations of the linear momentum deficit during the oscillation cycle is obtained and has been compared with the corresponding static data. The results... 

    A coupled adjoint formulation for non-cooled and internally cooled turbine blade optimization

    , Article Applied Thermal Engineering ; Volume 105 , 2016 , Pages 327-335 ; 13594311 (ISSN) Zeinalpour, M ; Mazaheri, K ; Chaharlang Kiani, K ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Most researches on the application of the adjoint method in turbine blade design are concentrated on the aerodynamic shape optimization without considering the heat transfer to/from the blade material. In this study, the adjoint method is extended to the conjugate heat transfer problems in which the viscous flow field is coupled to heat transfer in the solid region. Introducing a new adjoint variable in the solid domain, a heat adjoint equation is derived which is coupled with the energy adjoint equation in the fluid zone at the fluid/solid interface. The detailed mathematical description associated with the derivation of the heat adjoint equation with corresponding boundary conditions are... 

    2-D Design and Optimization of Axial Flow Compressor Blade with 2-Objective Method

    , M.Sc. Thesis Sharif University of Technology Naseripour Yazdi, Ali (Author) ; Hajilouy Benisi, Ali (Supervisor)
    Abstract
    Axial compressors are utilized to increase compressible flow pressure in an efficient manner where mass flow rate is high, such as aviation engines and power generation gas turbines. The flow is compressed within this machine through several stages. Each stage consists of a rotor blade row followed by a stator blade row. Energy transfer to the air is performed on the rotor by changing its velocity vector. Then, pressure is recovered from velocity by diffusion, meanwhile turning the flow direction through stator blades. These blades have been designed and optimized with various methods evolved with developing computational and manufacturing facilities. In this thesis the aerodynamic design of... 

    Jet-into-crossflow boundary-layer control: Innovation in gas turbine blade cooling

    , Article AIAA Journal ; Volume 45, Issue 12 , May , 2007 , Pages 2910-2925 ; 00011452 (ISSN) Javadi, Kh ; Taeibi Rahni, M ; Darbandi, M ; Sharif University of Technology
    2007
    Abstract
    Jet into crossflow has numerous technological applications, such as in film cooling of gas turbine blades. It has been more than half a century that people have been studying this problem and research is still underway due to its importance and its complexities. This paper is a computational study concerned with film cooling of gas turbine blades. A novel near-wall flow control technique of using staggered arrangement of small injection ports near a film-cooling hole (combined triple jet) is introduced. The fluid injected from the small ports changes the flow pattern downstream, resulting in a considerable enhancement of cooling efficiency. The flowfield computations, governed by the... 

    The influence of free stream turbulence intensity on the unsteady behavior of a wind turbine blade section

    , Article 45th AIAA Aerospace Sciences Meeting 2007, Reno, NV, 8 January 2007 through 11 January 2007 ; Volume 11 , 2007 , Pages 7611-7618 ; 1563478900 (ISBN); 9781563478901 (ISBN) Seddighi, M ; Soltani, M. R ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2007
    Abstract
    Extensive wind tunnel tests have been conducted to investigate effects of turbulence intensity variations on the behavior of a section of a wind turbine blade in an oscillatory motion. Special emphasize was applied on the aerodynamic characteristics when oscillating the model in the vicinity of its static stall angle of attack and in the post stall condition. The model had 0.25m chord and was pitched about its quarter-chord. Data were acquired at various Reynolds number, and reduced frequency. Results show that turbulent intensity has strong effect on the unsteady load coefficients, hence aerodynamic performance of this model. Furthermore, free stream turbulence has different effect on the... 

    Performance and stability enhancement of NASA Rotor 37 applying abradable coating

    , Article ASME Turbo Expo 2005 - Gas Turbie Technology: Focus for the Future, Reno-Tahoe, NV, 6 June 2005 through 9 June 2005 ; Volume 6 PART A , 2005 , Pages 93-102 Beheshti, B. H ; Farhanieh, B ; Ghorbanian, K ; Teixeira, J. A ; Ivey, P. C ; ASME International Gas Turbine Institute ; Sharif University of Technology
    2005
    Abstract
    Improvements in sealing mechanism between the rotating and the stationary parts of a rurbomachine can extensively reduce the endwall leakage flow. In this regard, abradable seals are incorporated into compressor and turbine blade-tip region. In a gas turbine, equipped with abradable seals, tip of the rotor blade is designed to cut into the material coating of the casing and to form a close fitted circumferential groove for the movement of the blade tip. As a result, the resistance to the leakage flow in the tip gap region increases due to smaller tip clearances (available without any rub-induced damages). Minimizing the tip clearance size can lead to an increase in performance and stability.... 

    Design and Fabrication of an Optimized Wake Equalizing Duct in Order to Improve Propulsion System Operation

    , M.Sc. Thesis Sharif University of Technology Ali Mirzazadeh, Siamak (Author) ; Seif, Mohammad S (Supervisor) ; Rad, Manouchehr ($item.subfieldsMap.e)
    Abstract
    Special geometrical sections, known as “duct”, which can be installed on merchant vessels stern in order to improve propulsion system and propeller performance, today have evolved considerably. The force which produces by the propeller depends on efficiency of propulsion system. In the way of improving the efficiency of propulsion systems, by using these special geometrical sections, to much research have been done from the mid-twentieth century. The Wake Equalizing Ducts (WEDs) in addition to conduct the more uniform fluid flow to the propeller disk (which causes to improve the propeller operation), affect on flow separation in ship stern zone and will decrease the separated flow zone.... 

    Turbine Blades Material Selection Using “Fuzzy Logic” and Considering the “Aging” Effect

    , M.Sc. Thesis Sharif University of Technology Aghanouri, Ali (Author) ; Abedian, Ali (Supervisor)
    Abstract
    Material selection is one of the most important works should be done prior to the designing of any part of the mechanical and/or nonmechanical structures. Various material selection methods, such as digital logic, modified digital logic, z-transformation and fuzzy logic, have been introduced and used in recent years. All these methods have some advantages and disadvantages in selection of appropriate materials. Since, all these methods exhibit some disadvantages, the main objective of thesis is to introduce the new method to reduce or eliminate the other method’s disadvantages with less complexity. The fuzzy logic method which is mostly used in this thesis will result in some problems due to...