Loading...
Search for: corrosion-resistance
0.007 seconds
Total 176 records

    Characterization of Zn–Mn phosphate coating deposited by cathodic electrochemical method

    , Article Transactions of the Indian Institute of Metals ; Volume 72, Issue 2 , 2019 , Pages 307-317 ; 09722815 (ISSN) Hajisafari, M ; Chakerizade, A ; Fallah, M ; Barati Darband, G ; Sharif University of Technology
    Springer  2019
    Abstract
    Electrophosphating is a novel method that is used for accelerating the low-temperature phosphating bath. In this study, Zn–Mn phosphate coating was fabricated on mild steel substrate using the cathodic electrochemical method. Afterward, the effect of electrolyte pH and applied current density was investigated on coating properties. Microstructure, phase analysis and corrosion resistance of coating were evaluated using SEM, X-ray diffraction, potentiodynamic, immersion test and electrochemical impedance spectroscopy tests, respectively. Results indicated that the metallic and nonmetallic phases are present in the coating fabricated by the cathodic electrochemical method. The results of the... 

    Investigation on Coating of Nonocomposits in Si-Al-O-N System by Plasma Electrolytic Oxidation Technique on Aluminum Substrate and Their Properties

    , M.Sc. Thesis Sharif University of Technology Banifarsi, Sanaz (Author) ; Faghihi Sani, Mohammad Ali (Supervisor)
    Abstract
    Aluminum and its alloys have wide applications in industry and recently researches have been expanded in this area. The main reasons are unique features of aluminum corrosion resistance and high strength to weight ratio. The fundamental problem of aluminum is low wear resistance that leads to be worn in industrial applications. For more efficiency of titanium, extensive efforts have been made for solving this problem, one of the best solutions is coating. Plasma electrolyte Oxidation (PEO) is a novel method to create ceramic coatings on metals to improve wear and corrosion resistance. In this research micro and nano Si3N4 particles were added to electrolyte to create alumina-silicate... 

    Influence of pulse parameters on electrocodeposition of Cr-Al2O3 nanocomposite coatings from trivalent chromium bath

    , Article International Heat Treatment and Surface Engineering ; Volume 6, Issue 4 , December , 2012 , Pages 178-184 ; 17495148 (ISSN) Salehi Doolabi, M ; Sadrnezhaad, S. K ; Salehi Doolabi, D ; Asadirad, M ; Sharif University of Technology
    2012
    Abstract
    Cr and Cr-Al2O3 coatings were electrodeposited from Cr(III) bath with both pulsating and direct current onto copper substrates. Pulsating current resulted in homogeneous films of higher Al2O3 content and lower particle agglomeration than the direct current. Differences were more tangible at shorter duty cycles and pulse frequencies. Pulsating current improved both microhardness and corrosion resistance. The presence of alumina nanoparticles resulted in greater current efficiency, higher film microhardness and better corrosion resistance. Maximum current efficiency, highest microhardness and densest electrodeposited coatings were achieved at current density of 20 A dm-2, duty cycle of 40% and... 

    Investigation and Synthesis of Zn-Ni-Mn Three Cationic Electrophosphate Coating

    , M.Sc. Thesis Sharif University of Technology Alimi, Zahra (Author) ; Ghorbani, Mohamad (Supervisor)
    Abstract
    The purpose of this study was to create a three-cationic electro phosphate coating of zinc-nickel-manganese by cathodic method and to investigate the effect of operating variables on the properties of zinc-nickel-manganese tri-cationic electro phosphate coating. Hence, the effects of variables such as coating acidity, coating thickness, coating temperature, coating time and concentration of manganese were studied in the bath on the properties such as coating morphology, corrosion resistance, coating thickness. Coating morphology was characterized by scanning electron microscopy and corrosion resistance by polarization test. The pH values of 1.4, 1.8, 2 and 2.2 were selected, and the results... 

    Effect of Nano Alumina Particles Addition in Electrolyte by Micro arc Oxidation Process on Titanium Substrate

    , M.Sc. Thesis Sharif University of Technology Sarbishei, Sahand (Author) ; Faghihi-Sani, Mohammad Ali (Supervisor) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    Titanium and its alloys have wide applications in industry and recently researches have been expanded in this area. The main reasons are unique features of titanium such as biological behavior, corrosion resistance and high strength to weight ratio. The fundamental problem of titanium is low wear resistance that leads to be worn in industrial applications. For more efficiency of titanium, extensive efforts have been made for solving this problem, one of the best solutions is coating.Micro Arc Oxidation (MAO) is a novel method to create ceramic coatings on metals to improve wear and corrosion resistance. In this research nano alumina particles were added to electrolyte to create... 

    Coating of MgO Thin Film on Porous NiTi Supper Elastic Alloy by MAO

    , M.Sc. Thesis Sharif University of Technology Falaki, Sajjad (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    The novel Micro Arc Oxidation technique (MAO) is gaining increased attention for depositing thick, dense, corrosion resistant and hard ceramic coating on metals. In this research, the effects of parameters including electrolyte composition and coating time on properties of MAO coatings formed on NiTi were investigated. The surface morphology, thickness and phase composition of coatings were investigated using scanning electron microscope and X-ray diffraction. Corrosion behavior of the coatings was examined by potentiodynamic polarization. Also wear resistance was examined by pin on disk test. It was found that MAO coatings improve corrosion resistance of NiTi. All of these applied... 

    Electroplating and characterization of Cr–Al2O3 nanocomposite film from a trivalent chromium bath [electronic resource]

    , Article Anti-Corrosion Methods and Materials ; Vol 61, No 4, 2014, 205-214 Salehi Doolabi, M. (Mohsen) ; Sadrnezhaad, Khatiboleslam ; Salehi Doolabi, Davood ; Sharif University of Technology
    Abstract
    The main aim of this study was to improve current efficiency and to obtain thicker coatings via aluminum oxide (Al2O3) addition to the chromium (Cr) (III) bath. Design/methodology/approach ‐ Pure Cr and nanocomposite Cr–Al2O3 coatings were electrodeposited from Cr (III) bath onto cathode copper substrates by conventional method. Dependence of current efficiency to current density, Al2O3 content and particle size were investigated. Findings ‐ Current efficiency increased with Al2O3 amount and decreased with Al2O3 particle size. Maximum current efficiency was achieved at 25 A/dm2 for pure Cr and 30 A/dm2 for composite coatings. Al2O3 bath content, current density and stirring rate increased... 

    Comparison of the corrosion resistance of alkaline- and acid-anodized titanium

    , Article Materials Performance ; Volume 54, Issue 1 , 2015 , Pages 51-55 ; 00941492 (ISSN) Karambakhsh, A ; Ghahramani, S ; Afshar, A ; Malekinejad, P ; Sharif University of Technology
    National Assoc. of Corrosion Engineers International  2015
    Abstract
    The process of self-color anodizing of titanium is done in acidic and alkaline solutions, and anodic films of different colors are formed. Results of this work show that the corrosion rate of titanium decreased after the application of an anodizing layer  

    Partially stabilization of Zirconia and its effects on the Magnesia - Spinel refractory properties

    , Article UNITECR '05 - Unified International Technical Conference on Refractories: 9th Biennial Worldwide Congress on Refractories, Orlando, FL, 8 November 2005 through 11 November 2005 ; 2006 , Pages 715-721 ; 1574982656 (ISBN) Kazemi, A ; Nemati, Z. A ; Faghihi Sani, M. A ; Zahed, F ; Sharif University of Technology
    2006
    Abstract
    In this research, Magnesia Spinel refractories were formulated by using sintered magnesia, Tabular and Calcined Alumina and sintered Spinel. The grain size distribution of raw materials was modified, using the Andreessen equation. In order to improve the physical and mechanical properties and corrosion resistance of specimens, none stabilized Zirconia was added to the system. The pressed samples were sintered at 1700°C and the properties were evaluated at room and high temperatures. The formed phases and resultant microstructure were also, analyzed by XRD and SEM. The corrosion test was conducted in two parts. First, the depth of corrosion was measured in two zone, within 0-1mm and 1-2 mm... 

    Effect of current density on DC electrochemical phosphating of stainless steel 316

    , Article Surface and Coatings Technology ; Volume 205, Issue 7 , December , 2010 , Pages 2302-2306 ; 02578972 (ISSN) Oskuie, A. A ; Afshar, A ; Hasannejad, H ; Sharif University of Technology
    2010
    Abstract
    In this study, tri-cation phosphate coating of zinc, calcium and iron was applied electrochemically to stainless steel 316 substrates. Cathodic current was used as an accelerator for the phosphating process. The effects of current density on the microstructures of the coatings and the time necessary for the reduction of the oxide layer have been established. For this purpose, analyses such as chronopotentiometery, SEM, EDS and linear polarization were carried out. Results indicated that higher electrophosphating current densities result in finer crystal size of the coating. This effect is detrimental to the quality of the layer. In addition, chemical analyses of the layer revealed that the... 

    Zn–Ni electrophosphating on galvanized steel using cathodic and anodic electrochemical methods

    , Article Surface and Coatings Technology ; Volume 306 , 2016 , Pages 497-505 ; 02578972 (ISSN) Barati Darband, Gh ; Afshar, A ; Aliabadi, A ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    Electrophosphating is the novel method for accelerating the low temperature phosphating bath. This method can be performed as cathodic and anodic treatments. Both of them influence the coating deposition mechanism and therefore coating properties. In this study Zn–Ni electrophosphate coating was applied on galvanized steel using cathodic and anodic electrochemical methods. Microstructure, composition and corrosion resistance of coating were characterized by using a scanning electron microscopy, X-ray diffraction method and potentiodynamic polarization test respectively. The results of this study indicated that, by using cathodic method, compact phosphate coating with high corrosion... 

    Effect of Ca2+ additives on morphology, composition and corrosion resistant of Zn-12%Ni phosphate coating

    , Article Journal of Materials Research and Technology ; Volume 5, Issue 4 , 2016 , Pages 327-332 ; 22387854 (ISSN) Alizadeh, H ; Hanaei, A ; Pakseresht, A. H ; Shahbazkhan, A ; Parvini Ahmadi, N ; Baniasadi, F ; Sharif University of Technology
    Elsevier Editora Ltd 
    Abstract
    The aim of this study is to investigate the effect of phosphate solution with Ca2+ additives on weight, surface morphology and electrochemical behavior of phosphated Zn-Ni film. In order to characterize structure and morphology of surface, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were applied, respectively. Results showed that the main composition in produced coatings was hopeite Zn3(PO4)2·4H2O, which has high corrosion resistance. On one hand, in the presence of Ca2+ cations in solution, the weight of phosphate coating decreased, but on the other hand surface uniformity and corrosion resistance of the coating increased  

    Performance improvement of MgO-C refractory bricks by the addition of Nano-ZrSiO4

    , Article Materials Chemistry and Physics ; Volume 202 , 2017 , Pages 369-376 ; 02540584 (ISSN) Gheisari Dehsheikh, H ; Ghasemi Kahrizsangi, S ; Sharif University of Technology
    Abstract
    Many benefits of the MgO-C refractory bricks such as excellent corrosion resistance, high thermal shock resistance, good mechanical strength at high temperatures, and permeability have attracted attention of consumers in various industries. But on the other hand, the low oxidation resistance of these refractory bricks at high temperatures has restricted their application. For this purpose, in this research study, the impact of Nano-ZrSiO4 addition on microstructure and performance of MgO-C refractory was investigated. 0, 0.5, 1, 1.5, and 2 wt % of Nano-ZrSiO4 was added to compositions. After samples preparation, all specimens tempered and fired (in a coke bed) at the 250 °C and 1600 °C for 8... 

    An electrochemical synthesis of reduced graphene oxide/zinc nanocomposite coating through pulse-potential electrodeposition technique and the consequent corrosion resistance

    , Article International Journal of Corrosion ; Volume 2018 , 2018 ; 16879325 (ISSN) Moshgi Asl, S ; Afshar, A ; Yaghoubinezhad, Y ; Sharif University of Technology
    Hindawi Limited  2018
    Abstract
    Pulse-potential coelectrodeposition of reduced graphene oxide/zinc (rGO-Zn) nanocomposite coating is directly controlled upon a steel substrate from a one-pot aqueous mixture containing [GO-/Zn2+]δ+ nanoclusters. GO nanosheets are synthesized by modified Hummer's approach while Zn cations are produced in the solution and deposited on GO nanosheets using anodic dissolution technique. Eventually, nanoclusters are reduced to rGO-Zn film through an electrochemical process. Chemical composition, surface morphology, and corrosion resistance of the thin film are characterized. Results show that the corrosion resistance of rGO-Zn coating is approximately 10 times more than the bare steel. © 2018 S.... 

    Effect of current density on electrochemical phosphating of stainless steel 316L

    , Article TMS 2009 - 138th Annual Meeting and Exhibition, San Francisco, CA, 15 February 2009 through 19 February 2009 ; Volume 3 , 2009 , Pages 613-620 ; 9780873397407 (ISBN) Oskuie, A. A ; Afshar, A ; Sharif University of Technology
    2009
    Abstract
    In this study two cation coating of calcium and zinc has been developed on stainless steel 316L by electrochemical method. Cathodic current used as an accelerator for phosphating process and the effects of current density on microstructure of the phospahted layer and the time needed for termination of the phosphating process has been evaluated by potential-time, SEM, EDS, etc. Results indicate that higher current densities in electrochemical phosphating will result in heavier phospahted layer with finer crystal size which in turn deteriorates the quality of the layer by its higher porosity. Chemical analysis of the layer reveals that using the electrochemical method for phosphating of... 

    Investigation and Optimization of Ni-P-Zn Electroless Alloy Coatings

    , M.Sc. Thesis Sharif University of Technology Kordijazi, Amir (Author) ; karam, SaeedAllah (Supervisor) ; Dolati, Abolghasem (Supervisor)
    Abstract
    An optimization condition for obtaining Ni-Zn-P electroless alloy coating has been developed. The sulphate bath with sodium hypophosphate as a reducer and sodium citrate and ammonium chloride as complexing agents were used. The effect of variation in the pH level , temperature , time of deposition and reactants concentration on stability of bath, coating composition, microstructure, microhardness and corrosion resistance of coatings was investigated. The composition of coatings was obtained by using the EDAX analysis. To investigate coating morphology, SEM images were taken and to study the corrosion behavior of coatings potentidynamic polarization, Electrochemical Impedance Spectroscopy... 

    Investigation on Synthesis and Properties of TiO2-CNT Nanocomposites Coating on Al Substrate

    , M.Sc. Thesis Sharif University of Technology Shadravan, Aysan (Author) ; Nemati, Ali (Supervisor) ; Sadeghian, Zahra (Supervisor)
    Abstract
    The aim of this project is investigation on synthesis and characterization of the TiO2-CNT nanocomposite films on aluminum substrate by sol-gel dip coating method. The pure TiO2 and TiO2-CNT nanocomposite layers were coated on aluminum substrate and heat treated in 400 C. In this work Ti-tetra isopropxide and different amounts of CNTs (5,10,15 %wt), were used for obtain the composites. The coatings were characterized by X-Ray diffraction (XRD) and the crystallite size of TiO2 was calculated by Scherrer formula. The corrosion properties of coating were examined by polarization test, and corrosion resistance of pure TiO2 was compared with TiO2-CNT coatings, and It showed that the composite... 

    Formation and Investigation of Zinc-Nickel Two Cathionic Electrophospahte Coating Properties on Galvanized Steel

    , M.Sc. Thesis Sharif University of Technology Barati Darband, Ghasem (Author) ; Afshar, Abdollah (Supervisor)
    Abstract
    By using electrophoaphating treatment in the metal coating process, the operating temperature of chemical phosphating bath is decrease and also difficulties with the use of high temperature bath is eliminated. The aim of this study is investigate the effect of operating parameter on coating properties and also investigation the deposition mechanism of Zn-Ni electrophosphate coating. Coating properties such as morphology, corrosion resistance and porosity of the coating characterized using SEM, polarization test and electrochemical method respectively. The values used for pH effect was 1.6,1.8,2 and 2.2 results indicated that by increasing the pH value from 1.6 to 1.8 the icorr decrease from... 

    Formation & Properties of Zn–Ca– Mn Tri – Cation’s Phosphate Coating on St37 Steels

    , M.Sc. Thesis Sharif University of Technology Rasouli, Hassanali (Author) ; Afshar, Abdollah (Supervisor) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    Addition of heavy metal cations such as manganese and nickel in low zinc phosphating bath increases the corrosion resistance of coatings and provides more suitable substrates for painting (especially electrophoretic painting). In addition, due to accelerating property and low cost availability of heavy metal cations such as Mn, multi– cationic phosphating is cost effective. In the present study, chemical composition and operating parameters of zinc - calcium - manganese Tri- cationic phosphating solution were optimized. Then the effects of various parameters such as phosphating time, bath temperature and pH on properties of coating were investigated. According to the results, about 1 g/L was... 

    The effects of graphite and resin contents on the properties of doloma- graphite refractories

    , Article UNITECR '05 - Unified International Technical Conference on Refractories: 9th Biennial Worldwide Congress on Refractories, Orlando, FL, 8 November 2005 through 11 November 2005 ; 2006 , Pages 288-293 ; 1574982656 (ISBN) Naghibi, S ; Ali Nemati, Z ; Faghihi Sani, M. A ; Paidar, H ; Sharif University of Technology
    2006
    Abstract
    In this research, the properties of Dolomite Graphite refractories with different additives were evaluated. The samples were prepared with various amounts of Graphite and resin content. After preparation of the samples, the physical, mechanical properties, slag corrosion and thermal shock resistance were evaluated. The properties of the samples were evaluated up to 11% total Carbon (10% Graphite and 1% residual Carbon from resin) in the system. The reduction in MOR of the specimens, before and after heat treatment was measured, as a measure for the thermal shock resistance evaluation. The slag corrosion test was conducted based on the crucible test, at 1600°C for 5 hr. Then, the depth of...