Loading...
Search for: electron-beams
0.014 seconds
Total 50 records

    Electron beam focusing in the magnetic field of a bent electron beam evaporator

    , Article Iranian Journal of Physics Research ; Volume 17, Issue 2 , 2017 , Pages 263-268 ; 16826957 (ISSN) Salahshoor, M ; Zavarian, A. A ; Hafezi, F ; Sharif University of Technology
    Isfahan University of Technology  2017
    Abstract
    In this paper, the vacuum film deposition through electron beam evaporation has been reviewed and the effect of magnetic field on the operation of this system has been explained. Then, the magnetic field distribution due to magnetic components configuartion of a commercial evaporation source with 270-degree electron beam gun (manufactured by Sharif University Branch of ACECR), has been simulated by means of a finite element software, ANSYS. The simulation result was verified by comparing with the results obtained from measurement by Hall Effect sensor. Furthermore, by using the ray-tracing capability of the software, the capability of the magnetic lens of this device for electron beam... 

    Dosimetric evaluation of a newly developed radiochromic film for radiation processing

    , Article Iranian Journal of Science and Technology, Transaction A: Science ; Volume 31, Issue 4 , 2007 , Pages 397-401 ; 10286276 (ISSN) Akhavan, A ; Sohrabpour, M ; Sharifzadeh, M ; Sharif University of Technology
    Shiraz University  2007
    Abstract
    In order to improve the performance of a newly developed radiochromic film, GIC-79, some dosimetric characteristics of this film have been studied based on relevant standard practice. The present study describes some parameters that may affect the dosimeter response before, during, and after irradiation. The effect of absorbed dose rate on dosimeter response was determined by irradiating dosimeters at low absorbed dose rates with gamma rays. Calibration irradiations of dosimeters were performed with both gamma rays and also electrons to determine the effect of large difference absorbed dose rates on dosimeter response. In addition, post irradiation stability was obtained and also the... 

    Dispersion and gain investigation of a Cerenkov grating amplifier

    , Article IEEE Transactions on Electron Devices ; Volume 50, Issue 6 , 2003 , Pages 1562-1565 ; 00189383 (ISSN) Mehrany, K ; Rashidian, B ; Sharif University of Technology
    2003
    Abstract
    The sheet electron beam propagation over a rectangular deep groove grating is investigated and the interaction between surface harmonic waves, which are evanescent above the grating surface, with a dilute sheet electron beam is analyzed. It is assumed that a strong axial magnetic field is applied to constrain the motion of electrons along the waveguide axis. Under these conditions, a complex dispersion equation is derived and analyzed by using Taylor expansion. This expansion results in an analytical formulation for the gain. Using the derived analytical formulation of the gain, the effects of beam thickness, beam-grating gap, and characteristics of grating on gain is investigated  

    Studies on the properties and structure of electron-beam crosslinked low-density polyethylene/poly[ethylene-co-(vinyl acetate)] blends

    , Article Polymer International ; Volume 54, Issue 4 , 2005 , Pages 686-691 ; 09598103 (ISSN) Dadbin, S ; Frounchi, M ; Sabet, M ; Sharif University of Technology
    2005
    Abstract
    Blends of low-density polyethylene (LDPE) and poly[ethylene-co-(vinyl acetate)] (PEVA), crosslinked by electron-beam (EB) radiation, formed separate crystalline lattices with a homogeneous amorphous phase. The crystallinity of the EB-exposed samples slightly decreased, as verified by a slight reduction in the densities and melting heats and temperatures of the samples. The results obtained from both gel content and hot set tests showed that the degree of crosslinking in the amorphous regions was dependent on the dose and blend composition. The molecular weights between the crosslinks, measured from creep data, showed that an increasing PEVA content resulted in tighter network structures,... 

    Molecular structure and physical properties of E-beam crosslinked low-density polyethylene for wire and cable insulation applications

    , Article Journal of Applied Polymer Science ; Volume 86, Issue 8 , 2002 , Pages 1959-1969 ; 00218995 (ISSN) Dadbin, S ; Frounchi, M ; Haji Saeid, M ; Gangi, F ; Sharif University of Technology
    2002
    Abstract
    Crosslinking of homemade low-density polyethylene (LDPE) was performed by electron-beam (EB) irradiation. The gel content of the EB-exposed LDPE was determined by the solvent-extraction method. The degree of crosslinking was also evaluated by a hot set measuring test. The results obtained from both the gel-sol and the hot set methods showed that the degree of crosslinking was dependent on the deposited energy in LDPE samples. Increasing the absorbed dose increased the degree of network formation. The LDPE with higher molecular weight yielded higher efficiency of crosslinking at the same irradiation dose. The effect of irradiation dose on the molecular weight between crosslinks (Mc),... 

    Analysis of the Interaction of Electron Beam and External Field by Considering Space Charge Effect and its Application in EBL Nanolithography

    , M.Sc. Thesis Sharif University of Technology Farmehini Farahani, Vahid (Author) ; Rashidian, Bizhan (Supervisor) ; Mehrani, Khashayar (Co-Advisor)
    Abstract
    Due to tremendous growth in usage of electron beams in different applications like VLSI, welding, chemical processes, Polymer industry and medical applications, precise study of these beams is of great importance. One of the most important parameters in studying electron beams characteristics is the phenomenon and effect of space charge. Although in most methods of analyzing electron optical systems, this effect is neglected, however in high density beams, this effect is bold. Space charge effect is due to interaction and electrostatic repulsion force between each of the electrons in the beam, which results in a change in shape and also divergence of beam. It is worth to mention that in... 

    Effect of acidic and basic solutions on electron beam irradiated epoxy nanocomposites containing nanoclay, CaCO3 and TiO2 nanoparticles

    , Article Journal of Inorganic and Organometallic Polymers and Materials ; Vol. 24, issue. 4 , 2014 , pp. 745-752 ; ISSN: 1574-1443 Razavi, S. M ; Ahmadi, S. J ; Rahmani Cherati, P ; Sharif University of Technology
    Abstract
    High chemical resistance is the main prerequisites for materials that are intended to be utilized in usages such as chemicals storage containers production. Nanocomposites of epoxy resin containing nanoclay, CaCO3 and TiO2 nanoparticles were prepared and their chemical resistance was studied. Moreover, the effect of electron beam irradiation was explored. TEM micrographs proved the dispersion of nano-size particles in the polymeric matrix. XRD patterns showed an exfoliated structure for nanocomposite containing 1 % nanoclay and intercalated structures for nanocomposites with higher nanoclay contents. SEM showed the pits that appeared in epoxy/nanoclay structure due to chemical corrosion.... 

    Electron beam induced modifications in crystalline structure of polyvinylidene fluoride/nanoclay composites

    , Article Radiation Measurements ; Vol. 60 , January , 2014 , pp. 1-6 ; ISSN: 13504487 Rahmani, P ; Dadbin, S ; Frounchi, M ; Sharif University of Technology
    Abstract
    PVDF/nanoclay nanocomposites were prepared via melt mixing method. The intercalated dispersion of the nanoclay in PVDF matrix was confirmed by XRD. According to FTIR, DSC and XRD results, the presence of nanoclay facilitated transition from α-to-β crystalline phase. Electron beam irradiation decreased the melting point of the nanocomposites. The decrease in melting point of the nanocomposites was about 11 C at 500 kGy. The crystallinity of nanocomposites increased at an irradiation dose of 100 kGy and decreased at higher irradiation doses. The extent of crosslinking of the nanocomposites increased significantly with irradiation up to 300 kGy. The nanoclay intensified the increase in yield... 

    Mechanism of reaction of molten NiTi with EBM graphite crucible

    , Article Materials Science and Technology ; Volume 25, Issue 6 , 2009 , Pages 699-706 ; 02670836 (ISSN) Sadrnezhaad, Kh ; Ahmadi, E ; Malekzadeh, M ; Sharif University of Technology
    2009
    Abstract
    Ultra clean NiTi shape memory alloy was produced by electron beam melting of Ni rich vacuum inductionally melted butts together with pure Ti chunks in both condensed and electrographite crucibles. A hollow cathode discharge gun was used for heating up to 1623, 1653 and 1693 K and holding the charge materials under vacuum for 300, 600, 900 and 1200 s. Effects of temperature, time and compactness of the crucible on formation/disappearance of the hard compounds like Ni3Ti, Ti4Ni2O, Ti4Ni 2C, Ti3Ni2OC and TiC were determined by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. A combination of the experimental results with the kinetic rate equations indicated... 

    PVDF Nano Composite Coatings Resistant to Ionizing Radiation

    , M.Sc. Thesis Sharif University of Technology Rahmani, Peyman (Author) ; Forounchi, Massoud (Supervisor) ; Dadbin, Susan (Supervisor)
    Abstract
    Poly (vinylidene Fluoride) (PVDF)/organoclay nanocomposite films were prepared via melt mixing, solution casting and Co-precipitation techniques. The effects of different kinds of nanoclay, sample preparation techniques and electron beam irradiation on PVDF/Nanoclay nanocomposite are reported in this research project. Differential scanning calorimetry was used to study thermal properties and crystallinity of the PVDF and its nanocomposites. The chemical and crystalline structure of the samples was analysed by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) and the mechanical properties of the PVDF nanocomposite were characterized by stress strain test. The degree of... 

    Comparison between electron-beam and chemical crosslinking of silicone rubber

    , Article Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms ; Volume 243, Issue 2 , 2006 , Pages 354-358 ; 0168583X (ISSN) Frounchi, M ; Dadbin, S ; Panahinia, F ; Sharif University of Technology
    2006
    Abstract
    Silicone rubber (SR) was irradiated by electron beam over a dose range of 50-300 kGy in the absence of chemical reagents. Molecular weight between crosslinks (Mc) in the network of SB was determined by two methods of solvent swelling and modulus of elasticity. The network structure of the elastomer crosslinked by electron beam irradiation and chemical vulcanization was compared. Mechanical tests were performed to determine shore hardness, tensile elongation, strength and modulus of the samples. It was found that SR is effectively crosslinked by electron beam irradiation. The tensile strength, hardness, modulus and elongation of irradiated SR were higher than peroxide-crosslinked SR. The... 

    Study and production of silicone rubber and polyethylene alloy

    , Article Journal of Thermoplastic Composite Materials ; Volume 24, Issue 5 , 2011 , Pages 669-677 ; 08927057 (ISSN) Tavakkoli, H ; Meibod, M. P ; Frounchi, M ; Dadbin, S ; Sharif University of Technology
    2011
    Abstract
    Linear silicone rubber and polyethylene alloy produced from extrusion-injecting process will be present in separate phases. While samples are mixed with 1% dicumylperoxide, DCP, and injected in extruder, an alloy is almost formed. In addition, when the samples containing silicon rubber with vinyl group are mixed with polyethylene and passed in the vicinity of electron beam, a similar reaction occurs, as confirmed from FTIR spectrum. The water contact angles for the samples has been listed in the article. Furthermore, the crystallinity of samples produced via electron beam method is more than that obtained from peroxide method. On the other hand, the tensile strengths of produced samples via... 

    Effect of electron irradiation on polypropylene films

    , Article Plasma Science and Technology ; Volume 13, Issue 2 , 2011 , Pages 194-196 ; 10090630 (ISSN) Shahidi, S ; Wiener, J ; Ghoranneviss, M ; Anvari, A ; Sharif University of Technology
    Abstract
    Effects of both electron beam irradiation on the properties of polypropylene (PP) films and the irradiation on the different layers of a multilayer PP film are studied. A Fourier transform infrared spectroscope was used to investigate the chemical structure of the films. The results showed that the chemical properties of the first layer were improved, that is, more functional groups responsible for dye ability and hydrophilicity of the film were produced on its surface, while noticeable improvement was not detected on the surface of other layers. This was also confirmed by testing the dye ability of the layers. However, the results obtained by atomic force microscopy showed that the electron... 

    Mechanical and surface properties of e-beam irradiated polytetrafluoroethylene-silicone rubber composites

    , Article Polymers and Polymer Composites ; Volume 18, Issue 6 , 2010 , Pages 329-336 ; 09673911 (ISSN) Dadbin, S ; Kashcooli, Y ; Frounchi, M ; Sharif University of Technology
    2010
    Abstract
    Compounding electron beam irradiated polytetrafluoroethylene (PTFE or Teflon) powder with silicone rubber produced silicone rubber/PTFE composites with desired physical properties. PTFE powder was exposed to electron beam irradiation at various doses and characterized by FTIR, DSC and contact angle measurements. Irradiation of PTFE with high energy electron beam induced chain scission reactions. Irradiated PTFE showed higher degree of crystallization and lower melting point with increasing absorbed dose. Number average molecular weight of irradiated PTFE was reduced significantly at higher absorbed doses. Formation of polar groups on the surface of irradiated PTFE powder was detected by FTIR... 

    Optical properties and morphology analysis of hexagonal WO3 thin films obtained by electron beam evaporation

    , Article Journal of Materials Science: Materials in Electronics ; 2020 Shakoury, R ; Arman, A ; Rezaee, S ; Korpi, A. G ; Kulesza, S ; Luna, C ; Bramowicz, M ; Mardani, M ; Sharif University of Technology
    Springer  2020
    Abstract
    WO3 films with thicknesses between 550 and 853 nm were deposited on glass substrates using the electron beam evaporation method at room temperature. The microstructures and surface roughness of the films were studied by X-ray diffraction (XRD) and atomic force microscopy (AFM). It was observed that the crystalline structure of the WO3 thin films significantly changes from the amorphous to crystalline states with a crystalline texture, and the mosaicity and grain size dependent on the film thickness. The transmittance spectra of the obtained WO3 films were measured in the range from 340 to 850 nm, and the Swanepoel method was used to determine the refractive indices and the thicknesses of the... 

    The effect of thickness and film homogeneity on the optical and microstructures of the ZrO2 thin films prepared by electron beam evaporation method

    , Article Optical and Quantum Electronics ; Volume 53, Issue 8 , 2021 ; 03068919 (ISSN) Shakoury, R ; Talebani, N ; Zelati, A ; Ţălu, Ş ; Arman, A ; Mirzaei, S ; Jafari, A ; Sharif University of Technology
    Springer  2021
    Abstract
    In this study, ZrO2 coatings with different thicknesses were grown by the electron beam evaporation technique. The crystalline structure was studied by XRD analysis which suggested the tetragonal and monoclinic phases for ZrO2 coatings. Additionally, the film thickness slightly enhanced the crystallinity. The surface morphology and fractal features were analyzed using Scanning Electron Microscopy (SEM). The surface statistical parameters and the fractal geometry were employed to analyze the impact of the coating thickness and homogeneity on the morphology of the films. The statistical processing and fractal dimension revealed variations in the morphology parameters due to the electron beam... 

    Optical properties and morphology analysis of hexagonal WO3 thin films obtained by electron beam evaporation

    , Article Journal of Materials Science: Materials in Electronics ; Volume 32, Issue 1 , 2021 , Pages 798-805 ; 09574522 (ISSN) Shakoury, R ; Arman, A ; Rezaee, S ; Korpi, A. G ; Kulesza, S ; Luna, C ; Bramowicz, M ; Mardani, M ; Sharif University of Technology
    Springer  2021
    Abstract
    WO3 films with thicknesses between 550 and 853 nm were deposited on glass substrates using the electron beam evaporation method at room temperature. The microstructures and surface roughness of the films were studied by X-ray diffraction (XRD) and atomic force microscopy (AFM). It was observed that the crystalline structure of the WO3 thin films significantly changes from the amorphous to crystalline states with a crystalline texture, and the mosaicity and grain size dependent on the film thickness. The transmittance spectra of the obtained WO3 films were measured in the range from 340 to 850 nm, and the Swanepoel method was used to determine the refractive indices and the thicknesses of the... 

    A new approach for simulating D-T fusion interaction using the Geant4 toolkit

    , Article Journal of Instrumentation ; Volume 17, Issue 3 , 2022 ; 17480221 (ISSN) Mohtashami, S ; Moshkbar Bakhshayesh, K ; Sharif University of Technology
    IOP Publishing Ltd  2022
    Abstract
    In this study, the Geant4 toolkit is utilized to present a new approach for simulation of the D-T interaction. The neutron production cross-section and the energy/angle distribution of neutrons produced as the D-T data libraries are incorporated in the Geant4, and their performance is evaluated. The spectra shape of the produced neutrons of the D-T interaction simulated by the Geant4 show good agreement compared to the results of the comparative codes (i.e. MCUNED, ENEA-JSI, and DDT). However, some differences are observed, especially, in angular range of 90-95 degrees. The reason for these differences as well as the results of the proposed approach in comparison with the results of the... 

    Comparison of rheological behavior of branched polypropylene prepared by chemical modification and electron beam irradiation under air and N2

    , Article Radiation Physics and Chemistry ; Volume 79, Issue 10 , 2010 , Pages 1088-1094 ; 0969806X (ISSN) Mousavi, S. A ; Dadbin, S ; Frounchi, M ; Venerus, D. C ; Medina, T. G ; Sharif University of Technology
    2010
    Abstract
    Chemical and electron beam irradiation methods were used to introduce a branched structure into polypropylene and propylene-ethylene copolymer. The chemical method was carried out in an internal mixer using initiator and TMPTMA monomer. In irradiation method, the polymer was irradiated by electron beam under air and nitrogen atmosphere. The branched structure in the modified polymer was confirmed by rheological measurements. While degradation was significant in chemical method, branching occurred efficiently by irradiation under air. Small amount of ethylene in the propylene copolymer promoted branching over degradation  

    Benchmarking of Monte Carlo model of Siemens Oncor® linear accelerator for 18MV photon beam: determination of initial electron beam parameters

    , Article Journal of X-Ray Science and Technology ; Volume 27, Issue 6 , 2 January , 2020 , Pages 1047-1070 Najafzadeh, M ; Hoseini Ghafarokhi, M ; Bolagh, R. S. M ; Haghparast, M ; Zarifi, S ; Nickfarjam, A ; Farhood, B ; Chow, J. C. L ; Sharif University of Technology
    IOS Press  2020
    Abstract
    OBJECTIVE: This study aims to benchmark a Monte Carlo (MC) model of the 18 MV photon beam produced by the Siemens Oncor® linac using the BEAMnrc and DOSXYZnrc codes. METHODS: By matching the percentage depth doses and beam profiles calculated by MC simulations with measurements, the initial electron beam parameters including electron energy, full width at half maximum (spatial FWHM), and mean angular spread were derived for the 10×10 cm2 and 20×20 cm2 field sizes. The MC model of the 18 MV photon beam was then validated against the measurements for different field sizes (5×5, 30×30 and 40×40 cm2) by gamma index analysis. RESULTS: The optimum values for electron energy, spatial FWHM and mean...