Loading...
Search for: elongation
0.007 seconds
Total 37 records

    Application of a failure analysis to powder forming processes

    , Article Journal of Materials Processing Technology ; Volume 143-144, Issue 1 , 2003 , Pages 46-51 ; 09240136 (ISSN) Khoei, A. R ; Sharif University of Technology
    2003
    Abstract
    In this paper, an h-adaptive analysis for the mixed finite element solution of powder forming problems is presented involving localization due to material instability. A remeshing strategy is employed to compute the distribution of required element size using the estimated error distribution. Once the new element size and its alignment have been indicated, an automated procedure is used to construct the mesh according to a predetermined size and elongation distribution. The numerical results were obtained for a multi-level component to indicate the failure surfaces and evaluate the ultimate capacity of material. © 2003 Elsevier Science B.V. All rights reserved  

    H-adaptive finite element analysis for localization phenomena with reference to metal powder forming

    , Article Finite Elements in Analysis and Design ; Volume 38, Issue 6 , 2002 , Pages 503-519 ; 0168874X (ISSN) Khoei, A. R ; Lewis, R. W ; Sharif University of Technology
    2002
    Abstract
    Standard finite element models, i.e. finite element methods that use standard constitutive models, suffer from excessive mesh dependence when strain-softening models are used in numerical analyses and cannot reproduce the size effect commonly observed in quasi-brittle failure. In this paper, an h-adaptive analysis for the mixed finite element solution of solid mechanics problems is presented with special reference to metal powder forming involving localization due to material instability. A remeshing strategy is employed to compute the distribution of required element size using the estimated error distribution. The numerical results are obtained for a Von-Mises yield criterion applied to a... 

    Numerical analysis of strain localization in metal powder-forming processes

    , Article International Journal for Numerical Methods in Engineering ; Volume 52, Issue 5-6 , 2001 , Pages 489-501 ; 00295981 (ISSN) Lewis, R. W ; Khoei, A. R ; Sharif University of Technology
    John Wiley and Sons Ltd  2001
    Abstract
    It is well known that strain localization and indeed displacement discontinuity can arise in materials exhibiting plastic behaviour. Indeed such localization is almost certain to occur if strain softening or non-associated behaviour exists, though it can be triggered even when ideal plasticity is assumed. This study is concerned mainly with the manner in which the numerical discretization process has to be devised so as to capture the localization phenomenon. In this paper, a method is presented for applying the mixed formulation to study the prediction of localization phenomenon in powder-forming processes. This study is focused on the performance of mixed u - π triangular elements to study... 

    The effect of melt quality and filtering on the Weibull distributions of tensile properties in Al-7%Si-Mg alloy castings

    , Article Materials Science and Engineering A ; Volume 579 , 2013 , Pages 64-70 ; 09215093 (ISSN) Eisaabadi B., G ; Davami, P ; Kim, S. K ; Tiryakioglu, M ; Sharif University of Technology
    2013
    Abstract
    The effects of melt quality and the placement of a filter in the filling system on Weibull distributions of tensile strength and elongation of Al-7%Si-Mg alloy castings were investigated. Three different combinations of melt quality and filtering were used: (a) unstirred, with filter in the filling system, (b) stirred to produce and entrain surface oxide films with no filter in the filling system to emulate poor initial melt preparation and melt handling, and (c) stirred and with a filter placed in the filling system. The results showed that the highest elongation and tensile strength values were obtained from the unstirred, filtered condition and lowest values were from stirred and... 

    Statistical Mechanics of Catenatedand Knotted Polymer Structures

    , Ph.D. Dissertation Sharif University of Technology Ahmadian Dehaghani, Zahra (Author) ; Ejtehadi, Mohammad Reza (Supervisor)
    Abstract
    In this thesis, we investigate the effects of topological constraints in catenanes composed of interlinked ring polymers on their size in a good solvent as well as on the location of their θ-point when the solvent quality is worsened. We mainly focus on poly[n]catenanes consisting of n ring polymers each of length m interlocked in a linear fashion. We study the scaling of the poly[n]catenane’s radius of gyration assuming that R ~ m^μ n^ν with µ = 16/25 and ν = 3/5 in a good solvent, with these values of µ and ν obtained by means of a Flory-like theory and further confirmed by numerical simulations. We show that individual rings within catenanes feature a surplus swelling due to the presence... 

    The Effect of Cooling Rate and Heat Treatment on An Al-4.5% Cu Alloy

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Hesam (Author) ; Varahram, Naser (Supervisor)
    Abstract
    Al-4.5% Cu alloy, an age-hardenable alloy, is an important alloy in industry due to such unique characteristics as high strength-to-weight ratio and considerable strength at elevated temperatures. In this study, the aim was to evaluate the combined effect of cooling rate and heat treatment on an A206 alloy having more impurities—especially iron—than the nominal specifications. To this end, the melt was poured in a five-step mold. Afterwards, each step was subjected to T4 and T6 treatments in order to study the changes compared to the as-cast samples. Ultimate tensile strength, yield strength, elongation, and grain size were determined by using tensile tests and optical microscopy,... 

    Fabrication of SiC body by microwave sintering process

    , Article Journal of Materials Science: Materials in Electronics ; Volume 28, Issue 7 , 2017 , Pages 5675-5685 ; 09574522 (ISSN) Ahmadbeygi, S ; Khodaei, M ; Nemati, A ; Yaghobizadeh, O ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    In the present study, SiC samples with 3, 5, 7.5 and 10 wt% Al2O3–Y2O3 as additives were made by powder metallurgy method, then sintering was performed by microwave-assisted process. β–SiC samples sintering was performed for 100 min. The highest sintered relative density 91.06% was achieved at 10 wt% additives content. The maximum values of hardness and toughness were up to 23.3 GPa and 6.14 MPa.m− 1/2. α–SiC and α–SiC/β–SiC samples sintering was performed for 120 min. The maximum value of density and hardness were up to 96.38% T.D and 24.88 GPa in α–SiC with 7.5 wt% additives, whereas the highest toughness was achieved at 10 wt% additives content in β–SiC samples. The α–SiC samples... 

    Prediction of effect of thermo-mechanical parameters on mechanical properties and anisotropy of aluminum alloy AA3004 using artificial neural network

    , Article Materials and Design ; Volume 28, Issue 5 , 2007 , Pages 1678-1684 ; 02613069 (ISSN) Forouzan, S ; Akbarzadeh, A ; Sharif University of Technology
    Elsevier Ltd  2007
    Abstract
    An artificial neural network model, using a back-propagation learning algorithm is utilized, to predict the yield stress, elongation, ultimate tension stress, over(R, -) and {divides}ΔR{divides} during hot rolling, cold rolling and annealing of AA3004 aluminum alloy. Input nodes were chosen as the ratio of initial to final thicknesses, reduction, preheating time and temperature, finish rolling temperature and the final annealing temperature. The maximum error for predicted values was 6.35%, the average of absolute relative error was 0.57% and the RMS was 0.00998. It was found that the mechanical properties and anisotropy of AA3004 alloy sheets can be predicted by this approach. © 2006... 

    The effect of Ti on mechanical properties of extruded in-situ Al-15 pct Mg2Si composite

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 44, Issue 9 , September , 2013 , Pages 4366-4373 ; 10735623 (ISSN) Soltani, N ; Bahrami, A ; Pech Canul, M. I ; Sharif University of Technology
    2013
    Abstract
    This work was carried out to investigate the effect of different Ti concentrations as a modifying agent on the microstructure and tensile properties of an in-situ Al-15 pctMg2Si composite. Cast, modified, homogenized small ingots were extruded at 753 K (480°C) at the extrusion ratio of 18:1 and ram speed of 1 mm/s. Various techniques including metallography, tensile testing, scanning electron microscopy were used to characterize the mechanical behavior, microstructural observations, fracture mechanisms of this composite. The results showed that 0.5 pctTi addition and homogenizing treatment were highly effective in modifying Mg2Si particles. The results also exhibited that the addition of Ti... 

    Oxygen-barrier properties of poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable films

    , Article Journal of Applied Polymer Science ; Volume 125, Issue SUPPL. 2 , September , 2012 , Pages E20-E26 ; 00218995 (ISSN) Razavi, S. M ; Dadbin, S ; Frounchi, M ; Sharif University of Technology
    Wiley  2012
    Abstract
    The oxygen-barrier properties of poly(lactic acid) (PLA)/poly(vinyl acetate-co-vinyl alcohol) [P(VAc-co-VA)] were investigated. P(VAc-co-VA)s with vinyl alcohol (VA) contents of 5, 10, and 15 mol % were prepared with the acid-catalyzed hydrolysis of poly(vinyl acetate). The obtained copolymers with various contents of VA were blended with PLA at 5/95, 10/90, and 15/85 compositions. Films of the blends were prepared by a solution-casting method with chloroform as the cosolvent. Although the blend with 5% VA in the copolymer appeared to be miscible, the blends with 10 and 15% VA content in the copolymer were immiscible, as verified by dynamic mechanical analysis. The oxygen-barrier properties... 

    Producing ultrafine-grained aluminum rods by cyclic forward-backward extrusion: Study the microstructures and mechanical properties

    , Article Materials Letters ; Volume 74 , May , 2012 , Pages 147-150 ; 0167577X (ISSN) Alihosseini, H ; Zaeem, M. A ; Dehghani, K ; Shivaee, H. A ; Sharif University of Technology
    2012
    Abstract
    A cyclic forward-backward extrusion (CFBE) process was used as a severe plastic deformation (SPD) technique to produce ultrafine-grained aluminum rods. Yield strength and tensile strength of the specimens increased by increasing the number of CFBE cycles, while elongation to break decreased due to an increase in the grain refinement and microhardness. According to transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD) results, the average grain size was reduced from 120 μm to 315 nm after only 3 cycles of CFBE  

    Bond strength and mechanical properties of three-layered St/AZ31/St composite fabricated by roll bonding

    , Article Materials and Design ; Volume 88 , 2015 , Pages 880-888 ; 02641275 (ISSN) Abedi, R ; Akbarzadeh, A ; Sharif University of Technology
    2015
    Abstract
    The aim of this research is bonding of three-layered St/AZ31/St composite by roll-bonding process. The roll-bonding process was performed at three preheating temperatures, 340, 400 and 450°C, with thickness reduction of 30 to 68% and different thicknesses of intermediate layer (AZ31). In order to improve the bonding strength, the as-rolled specimens were annealed at constant temperature of 375°C. For evaluation of bond strength and investigating the formation of a diffusion layer, the results of peel test and microscopic images were studied. Tensile specimens were prepared along the rolling direction to measure the mechanical properties of the composite. The results showed that by increasing... 

    An investigation on modelling and measurements of transient elongational rheology of polymer melts by ser testing platform

    , Article E-Polymers ; 2009 ; 16187229 (ISSN) Rajabian, M ; Naderi, G ; Piroozfar, H ; Beheshty, M. H ; Samadfam, M ; Sharif University of Technology
    2009
    Abstract
    Transient elongational rheology of PP is investigated experimentally. A specifically designed fixture consisting of two drums mounted on a TA Instruments ARES rotational rheometer was used to measure the transient uniaxial extensional viscosity of two commercial grades polypropylene in the molten state. The Hencky strain was varied from 0.003 to 2 s-1 and the temperature was fixed at 180 °C. The measurements show that the steady state elongational viscosity was reached at the measured Hencky strains for polypropylene. Eslami and Grmela have recently introduced a reptation diffusion term arising from the intermolecular chain forces into the rigid FENE-P dumbbells model. The same approach has... 

    Antioxidant, antifungal, water binding, and mechanical properties of poly(vinyl alcohol) film incorporated with essential oil as a potential wound dressing material

    , Article Journal of Applied Polymer Science ; Vol. 131, issue. 20 , 2014 Kavoosi, G ; Nateghpoor, B ; Dadfar, S. M. M ; Dadfar, S. M. A ; Sharif University of Technology
    Abstract
    In this study, the properties of poly (vinyl alcohol)(PVA) films incorporated with Zataria multiflora essential oil (ZMO) as a potential antioxidant/antibacterial material was investigated. PVA films were prepared from PVA solutions (2% w/v) containing different concentrations of ZMO. Water solubility, moisture absorption, water swelling, and water vapor permeability for pure PVA films were 57 ± 1.1, 99 ± 3.2%, 337 ± 8%, and 0.453 ± 0.015 g mm/m2 h, respectively. Incorporation of ZMO into PVA films caused a significant decrease in water swelling and moisture absorption and increase in solubility and water vapor permeability. Tensile strength, elastic modulus, and elongation at break for pure... 

    Evaluating the effects of different plasticizers on mechanical properties of starch/ clay nanocomposites

    , Article Advanced Materials Research ; Volume 829, 2014 , 2014 , Pages 279-283 ; ISSN: 10226680 ; ISBN: 9783037859070 Sherafati, M ; Mousavi, S. M. A ; Emam Djomeh, Z ; Bagheri, R ; Sharif University of Technology
    Abstract
    Nano-biocomposites are a new class of hybrid materials composed of nano-sized filler (nanofiller) incorporated into a bio-based matrix. Such an association between eco-friendly biopolymers and nano-objects, with the aim to obtain synergic effects, is one of the most innovating routes to enhance the properties of these bio-matrices. In recent years, there has been an increasing interest in Starch as an inexpensive and renewable source has been used as a filler for environmentally friendly plastics for about two decades. However, the poor mechanical properties of starch based biopolymers, leads to use of nanoparticles as reinforcing materials. In the present study, the influence of a... 

    Production and characterization of UHMWPE/fumed silica nanocomposites

    , Article Polymer Composites ; Volume 33, Issue 10 , 2012 , Pages 1858-1864 ; 02728397 (ISSN) Ramazani, A ; Saremi, M. G ; Amoli, B. N ; Izadi, H ; Sharif University of Technology
    Wiley  2012
    Abstract
    Ultrahigh-molecular-weight polyethylene (UHMWPE)/fumed silica nanocomposites were prepared via in situ polymerization using a bi-supported Ziegler-Natta catalytic system. Nanocomposites with different nanoparticle weight fractions were produced in order to investigate the effect of fumed silica on thermal and mechanical properties of UHMWPE/fumed silica nanocomposites. The viscosity average molecular weight (M) of all samples including pure UHMWPE as the reference sample and nanocomposites were measured. Scanning electron microscope (SEM) images showed the homogenous dispersion of nanoparticles throughout the UHMWPE matrix while no nanoparticle cluster has been formed. Crystallization... 

    Effect of hot rolling on microstructure and transformation cycling behaviour of equiatomic NiTi shape memory alloy

    , Article Materials Science and Technology (United Kingdom) ; Volume 28, Issue 6 , 2012 , Pages 727-732 ; 02670836 (ISSN) Ahadi, A ; Rezaei, E ; Karimi Taheri, A ; Sharif University of Technology
    2012
    Abstract
    In this study, a near equiatomic NiTi shape memory alloy was hot rolled at 800°C using thethickness reductions of 30 and 50%. Optical and transmission electron microscopy, together withX-ray diffraction were used to demonstrate the microstructural changes associated with the hotrolling at different thickness reductions. Repeated transformation cycling was employed toinvestigate the evolution of R phase during cycling. Microstructural observations revealed thepresence of deformation twins embedded in an elongated grain matrix in the hot rolled material.Moreover, it was found that with increasing degree of thickness reduction, the size and number ofdeformation twins increased throughout the... 

    Preparation of ethylene vinyl acetate copolymer/graphene oxide nanocomposite films via solution casting method and determination of the mechanical properties

    , Article Polymer - Plastics Technology and Engineering ; Volume 54, Issue 2 , Jan , 2015 , Pages 218-222 ; 03602559 (ISSN) Bahmanyar, M ; Sedaghat, S ; Ramazani S. A, A ; Baniasadi, H ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    Ethylene vinyl acetate/graphene oxide (EVA/GO) nanocomposite films were prepared via solution casting method. The morphological studies investigated using SEM and XRD methods and the results confirmed the formation of likely exfoliation structures and good interaction between matrix and fillers. The results of permeability measurements showed that films have good resistance against oxygen. Mechanical measurements revealed that Young’s modulus and tensile strength of EVA have improved with introducing GO because of proper dispersion of GO into matrix and good interaction between them; however, elongation at break decreased due to formation of strong and rigid polymer/filler network preventing... 

    Effect of finishing temperature on mechanical properties of a Nb-microalloyed steel sheet

    , Article Advanced Materials Research, 17 September 2010 through 19 September 2010 ; Volume 129-131 , 2010 , Pages 1022-1028 ; 10226680 (ISSN) ; 9780878492435 (ISBN) Mirahmadi Khaki, D ; Akbarzadeh, A ; Abedi, A ; Sharif University of Technology
    Abstract
    Thermo mechanical processing and controlled rolling of microalloyed steel sheets are affected by several factors. In this investigation, finishing temperature of rolling which is considered as the most effective parameters on the final mechanical properties of hot rolled products has been studied. For this purpose, three different finishing temperatures of 950, 900 and 850 °C below the non-recrystallization temperature and one temperature of 800 °C in the intercritical range were chosen. It is observed that decreasing the finishing temperature causes increase of strength and decrease of total elongation. This is accompanied by more grain refinement of microstructure and the morphology was... 

    The effect of dynamic strain aging on subsequent mechanical properties of dual-phase steels

    , Article Journal of Materials Engineering and Performance ; Volume 19, Issue 4 , June , 2010 , Pages 607-610 ; 10599495 (ISSN) Molaei, M. J ; Ekrami, A ; Sharif University of Technology
    2010
    Abstract
    Dual-phase (DP) steels with different martensite contents were produced by subjecting a low carbon steel to various heat treatment cycles. In order to investigate the effect of dynamic strain aging (DSA) on mechanical properties, tensile specimens were deformed 3% at 300 °C. Room temperature tensile tests of specimens which deformed at 300 °C showed that both yield and ultimate tensile strengths increased, while total elongation decreased. The fatigue limit increased after pre-strain in the DSA temperature range. The effects of martensite volume fraction on mechanical properties were discussed