Loading...
Search for: enhanced-recovery
0.007 seconds
Total 177 records

    Mechanistic study to investigate the effects of different gas injection scenarios on the rate of asphaltene deposition: An experimental approach

    , Article Fuel ; Volume 262 , 2020 Dashti, H ; Zanganeh, P ; Kord, S ; Ayatollahi, S ; Amiri, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Asphaltene deposition during enhanced oil recovery (EOR) processes is one of the most problematic challenges in the petroleum industry, potentially resulting in flow blockage. Our understanding of the deposition mechanism with emphasis on the rate of the asphaltene deposition is still in its infancy and must be developed through a range of experiments and modelling studies. This study aims to investigate the rate of asphaltene deposition through a visual study under different gas injection scenarios. To visualise the asphaltene deposition, a high-pressure setup was designed and constructed, which enables us to record high-quality images of the deposition process over time. Present research... 

    Comparison and modification of models in production of biosurfactant for Paenibacillus alvei and Bacillus mycoides and its effect on MEOR efficiency

    , Article Journal of Petroleum Science and Engineering ; Volume 128 , April , 2015 , Pages 177-183 ; 09204105 (ISSN) Najafi, A. R ; Roostaazad, R ; Soleimani, M ; Arabian, D ; Moazed, M. T ; Rahimpour, M. R ; Mazinani, S ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Biosurfactant production from two indigenous consortia has already been investigated in two previous studies. In this study, comparison and modification of those models for having as much biosurfactant as possible was conducted. After characterization of bacteria by biochemical tests and 16S ribotyping, a fully modification on the final models was presented. Response surface methodology has the ability to investigate the liability of the parameters and models by the help of Desirability mode and R2 coefficient in Design Expert software. Our models in the previous works follow the style of (y=f(A,B,. . .)) and two Desirability of 0.968 and 0.996 for Paenibacillus alvei ARN63 and Bacillus... 

    Scaling equations for oil/gas recovery from fractured porous media by counter-current spontaneous imbibition: From development to application

    , Article Energy and Fuels ; Vol. 27, issue. 8 , July , 2013 , p. 4662-4676 ; ISSN: 08870624 Mirzaei-Paiaman, A ; Masihi, M ; Sharif University of Technology
    Abstract
    Spontaneous imbibition, the capillary-driven process of displacing the nonwetting phase by the wetting phase in porous media, is of great importance in oil/gas recovery from matrix blocks of fractured reservoirs. The question of how properly scaling up the recovery by counter-current spontaneous imbibition has been the subject of extensive research over decades, and numerous scaling equations have been proposed. As a convention, the scaling equations are usually defined analytically by relating the early time squared recovery to squared pore volume. We show this convention does not apply to common scaling practices and, if used, causes nontrivial scatter in the scaling plots. We explain that... 

    The semi-analytical modeling and simulation of the VAPEX process of ""Kuh-e-Mond"" heavy oil reservoir

    , Article Petroleum Science and Technology ; Vol. 29, issue. 5 , Oct , 2009 , p. 535-548 ; ISSN: 10916466 Rasti, F ; Masihi, M ; Kharrat, R ; Sharif University of Technology
    Abstract
    The vapor extraction process (or VAPEX) uses vaporized solvents injected into a horizontal well to form a vapor chamber within the reservoir. Vapor dissolves in the oil and enhances the oil production by decreasing the oil viscosity in heavy oil reservoirs. To evaluate the process we conduct a simulation study on an Iranian heavy oil reservoir called Kuh-e-Mond. In addition, a semi-analytical investigation of the VAPEX process has been performed. The idea is to perform VAPEX simulation for a laboratory model and find a methodology to compare the results of the simulator with the semi-analytical Butler's model. In particular, a semi-analytical dimensionless correlation for production rate... 

    Analysis of Capillary-Viscous-Gravity Forces in Biopolymer Flooding with a Sensitivity Analysis on Polymer and Porous Medium Parameters

    , Article Journal of Dispersion Science and Technology ; Vol. 35, issue. 12 , Aug , 2014 , p. 1764-1773 Hamidpour, E ; Mirzaei-Paiaman, A ; Ramazani, S. A. A ; Hatami, A ; Sharif University of Technology
    Abstract
    Gravity, viscous, and capillary are three main forces affecting flow characteristics in porous media. No analytical solution can be found to model the flow by considering all these forces. In this work, by considering all these forces, the polymer-flooding process is modeled by using a numerical simulation approach. For characterizing the polymer, the modified Blake-Kozeny model is chosen, which benefits consideration of the permeability reduction due to polymer adsorption on the rock surface  

    A modified scaling equation based on properties of bottom hole live oil for asphaltene precipitation estimation under pressure depletion and gas injection conditions

    , Article Fluid Phase Equilibria ; Volume 358 , 2013 , Pages 212-219 ; 03783812 (ISSN) Jafari Behbahani, T ; Ghotbi, C ; Taghikhani, V ; Shahrabadi, A ; Sharif University of Technology
    2013
    Abstract
    The process of asphaltene precipitation has a substantial effect on oil flow during primary oil production and enhanced oil recovery processes in the petroleum industry. In this work, a modified scaling model based on the PVT properties of bottom hole live oil including resin to asphaltene ratio, onset pressure, bubble point pressure, reservoir temperature, asphaltene content of bottom hole live oil and gas to oil ratio has been proposed to account for asphaltene precipitation under pressure depletion/gas injection conditions and the proposed model was verified using experimental data obtained in this work and also with those reported in the literature. In the proposed scaling model the... 

    Scaling equations for oil/gas recovery from fractured porous media by counter-current spontaneous imbibition: From development to application

    , Article Energy and Fuels ; Volume 27, Issue 8 , 2013 , Pages 4662-4676 ; 08870624 (ISSN) Mirzaei Paiaman, A ; Masihi, M ; Sharif University of Technology
    2013
    Abstract
    Spontaneous imbibition, the capillary-driven process of displacing the nonwetting phase by the wetting phase in porous media, is of great importance in oil/gas recovery from matrix blocks of fractured reservoirs. The question of how properly scaling up the recovery by counter-current spontaneous imbibition has been the subject of extensive research over decades, and numerous scaling equations have been proposed. As a convention, the scaling equations are usually defined analytically by relating the early time squared recovery to squared pore volume. We show this convention does not apply to common scaling practices and, if used, causes nontrivial scatter in the scaling plots. We explain that... 

    The semi-analytical modeling and simulation of the VAPEX process of "Kuh-e-Mond" heavy oil reservoir

    , Article Petroleum Science and Technology ; Volume 29, Issue 5 , 2011 , Pages 535-548 ; 10916466 (ISSN) Rasti, F ; Masihi, M ; Kharrat, R ; Sharif University of Technology
    Abstract
    The vapor extraction process (or VAPEX) uses vaporized solvents injected into a horizontal well to form a vapor chamber within the reservoir. Vapor dissolves in the oil and enhances the oil production by decreasing the oil viscosity in heavy oil reservoirs. To evaluate the process we conduct a simulation study on an Iranian heavy oil reservoir called Kuh-e-Mond. In addition, a semi-analytical investigation of the VAPEX process has been performed. The idea is to perform VAPEX simulation for a laboratory model and find a methodology to compare the results of the simulator with the semi-analytical Butler's model. In particular, a semi-analytical dimensionless correlation for production rate... 

    The role of throat orientation on dispersion of solvent in crude oil-saturated porous media

    , Article Petroleum Science and Technology ; Volume 29, Issue 6 , Feb , 2011 , Pages 649-663 ; 10916466 (ISSN) Rezaeipour, A. R ; Kharrat, R ; Ghazanfari, M. H ; Yasari, E ; Sharif University of Technology
    2011
    Abstract
    In this work a series of hydrocarbon solvent injection experiments was performed on glass micromodels with different throat orientations that were initially saturated with crude oil at several fixed flow rate conditions. The solvent concentration as a function of location and time was measured using image analysis of color intensity of continuously provided pictures during the injection process. The provided concentration calibration curve of solvent in crude oil was used for back-calculating the solvent concentration along the dispersion zone. The longitude and transverse dispersion coefficients were determined by fitting the results of the mathematical model to the experimental data. It... 

    Modeling fluid flow under sonic wave field in fractured porus media-with an approach to capillary forces

    , Article 4th International Conference and Exhibition: New Discoveries through Integration of Geosciences, 5 April 2010 through 8 April 2010 ; 2010 Najafi, I ; Ghazanfari, M ; Ghotbi, C ; Kharrat, R ; Sharif University of Technology
    European Association of Geoscientists and Engineers, EAGE 
    Abstract
    Till now, no mathematical model is presented to model the flow under sonic field be applied in fractured reservoirs. This will be more noticeable when we bear in mind that several reservoirs in Middle East region are fractured. In this work the effects of elastic waves on capillary trapping and mobility of Bingham plastic fluids in fractures have been investigated. Eventually, a model for predicting the influence range of the wave in fractured reservoirs is presented. The results of this study clarified that radiation of wave with low frequency and intensity extremely increases the flow rate and decreases the minimum pressure gradient required for flow of Bingham plastic fluids in fractured... 

    Effect of connectivity misrepresentation on accuracy of upscaled models in oil recovery by CO2 injection

    , Article Greenhouse Gases: Science and Technology ; Volume 6, Issue 3 , 2016 , Pages 339-351 ; 21523878 (ISSN) Ganjeh Ghazvini, M ; Masihi, M ; Baghalha, M ; Sharif University of Technology
    Blackwell Publishing Ltd  2016
    Abstract
    An upscaling method such as renormalization converts a detailed geological model to a coarse one. Although flow equations can be solved faster on a coarse model, its results have more errors. Numerical dispersion, heterogeneity loss, and connectivity misrepresentation are the factors responsible for errors. Connectivity has a great effect on the fluid distribution and leakage pathways in EOR processes or CO2 storage. This paper deals with the description and quantification of connectivity misrepresentation in the upscaling process. For detection of high-flow regions, the flow equations are solved under simplified single-phase conditions. These regions are recognized as the cells whose fluxes... 

    Study of the VAPEX process in fractured physical systems using different solvent mixtures

    , Article Oil and Gas Science and Technology ; Volume 63, Issue 2 , 2008 , Pages 219-227 ; 12944475 (ISSN) Azin, R ; Kharrat, R ; Vossoughi, S ; Ghotbi, C ; Sharif University of Technology
    2008
    Abstract
    In this work, the vapour extraction (VAPEX) process is studied experimentally in a rectangular physical model at moderate-high pressure. The solvent was either pure propane or a mixture of propane/ methane with different compositions. The solvent and carrier gas were totally mixed before injection, so that a solvent with the desired composition flowed through the injector during experiments, and the solvent mixture was in thermodynamic equilibrium before injection into VAPEX cell. Effects of pressure and composition of solvent were studied. Results showed that at a fixed pressure, the process is more effective with pure solvent compared to the use of solvent mixtures. The main feature of... 

    Laboratory studies of MEOR in micromodel as a fractured system

    , Article Society of Petroleum Engineers Eastern Regional Meeting 2007: Unbridling Energy's Future, Lexington, KY, 17 October 2007 through 18 October 2007 ; October , 2007 , Pages 39-46 ; 9781604239362 (ISBN) Nourani, M ; Panahi, H ; Biria, D ; Roosta, R ; Haghighi, M ; Mohebbi, A ; Sharif University of Technology
    2007
    Abstract
    Microbial EOR (MEOR) is receiving renewed interest worldwide. The method is based on microorganisms' activities to reduce residual oil of reservoirs, which is dependent on behavior of inherent microorganisms or injection of bioproduct of external microorganisms. Five bacterial species were taken from MIS crude oil that is one of the aging Persian fractured reservoirs. Visualization experiments were carried out to examine the behavior of MEOR in micromodels designed to resemble the fractured system: static and dynamic. A new surface sample of the MIS oil was taken at the well head and physical specifications were measured at the lab. This was fairly light oil with API gravity of 42.5. The... 

    Toward mechanistic understanding of heavy crude oil/brine interfacial tension: The roles of salinity, temperature and pressure

    , Article Fluid Phase Equilibria ; Vol. 375, issue , August , 2014 , p. 191-200 ; ISSN: 03783812 Moeini, F ; Hemmati-Sarapardeh, A ; Ghazanfari, M. H ; Masihi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    Injecting low salinity brines is regarded as an enhanced oil recovery (EOR) process through IFT reduction. However, the exact mechanism behind this process is an unsettled and complex issue that has not been well understood yet, especially for heavy crude oil system. Besides, limited information is available regarding the key heavy oil/brine interfacial tension (IFT). The present study aims to investigate the sensitivity of dead heavy crude oil/brine IFT to a wide range of properties/conditions and to reveal the underlying physicochemical mechanisms involved in enhanced oil recovery and IFT reduction by low salinity water injection into heavy oil reservoir. IFT was measured as a function of... 

    Monitoring the effect of discontinuous shales on the surfactant flooding performance in heavy oil reservoirs using 2D glass micromodels

    , Article Petroleum Science and Technology ; Vol. 32, issue. 12 , Apr , 2014 , p. 1404-1417 ; ISSN: 10916466 Mohammadi, S ; Kharrat, R ; Masihi, M ; Ghazanfari, M. H ; Saidian, M ; Sharif University of Technology
    Abstract
    Although most heavy oil reservoirs contain discontinuous shaly structures, there is a lack of fundamental understanding how the shaly structures affect the oil recovery efficiency, especially during surfactant flooding to heavy oils. Here, an experimental study was conducted to examine the effect of discontinuous shales on performance of surfactant flooding by introducing heterogeneities to represent streaks of shale in five-spot glass micromodels. Results show that oil recovery in presence of shale streak is lower than in its absence. Based on the authors' observations, the presence of flow barriers causes premature breakthrough of injected fluids and also an unstable displacement front. As... 

    An experimental study of the matrix-fracture interaction during miscible displacement in fractured porous media: A micromodel study

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Vol. 36, issue. 3 , Oct , 2010 , p. 259-266 ; ISSN: 15567036 Saidian, M ; Masihi, M ; Ghazanfari, M. H ; Kharrat, R ; Mohammadi, S ; Sharif University of Technology
    Abstract
    During miscible displacements in fractured porous media, one of the most important factors that plays a significant role in oil production is the matrix-fracture interaction. In this work, a series of hydrocarbon injection experiments have been performed on a fractured glass micromodel that was designed specifically to study matrix-fracture interaction. A high quality image analysis method was used to determine the fluid flow behavior, solvent front movement, and viscous fingering associated with solvent movement in matrix and fractures. Observations showed that in the case of unit viscosity ratio, the injection rate increased the slope of recovery curve and consequently improved the final... 

    Evaluation of chemicals interaction with heavy crude oil through water/oil emulsion and interfacial tension study

    , Article Energy and Fuels ; Vol. 27, issue. 10 , September , 2013 , p. 5852-5860 ; ISSN: 08870624 Dehghan, A. A ; Masihi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    A newly-designed surfactant was formulated to tolerate the harsh conditions of oil reservoirs, including high salinity of the formation brine and temperature. The specific emulsion and interfacial tension (IFT) behavior of this new surface active agent were investigated by performing emulsion stability tests, emulsion size analysis, and IFT behavior in the presence of four different types of alkalis. Image processing was utilized to analyze the droplet size distribution using microscopic images of the samples. The results show that depending on the composition of the mixtures, the optimum phase region and interfacial tension behavior change considerably. Solutions containing a higher... 

    Monitoring the role of fracture geometrical characteristics on fingering initiation/development during heavy oil miscible displacements in fractured porous media

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Vol. 35, issue. 12 , Aug , 2010 , p. 1129-1139 ; ISSN: 15567036 Saidian, M ; Ghazanfari, M. H ; Masihi, M ; Kharrat, R ; Sharif University of Technology
    Abstract
    Finger initiation/development at fluid-fluid interface during miscible floods can cause poor displacement efficiency, which is undesirable in enhanced oil recovery processes. In this work, a series of hydrocarbon injection experiments performed on 5-spot glass micromodels that were initially saturated with the heavy crude oil. The fractured micromodels with different fracture geometrical characteristics were used in the tests. High quality image analysis was applied to determine the fluid flow behavior, solvent front movement, and viscous fingering associated with solvent movement in matrix and fractures. Observations showed that higher solvent dispersion in the fractures rather than matrix... 

    An experimental investigation of sequential CO2 and N 2 gas injection as a new EOR Method

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Vol. 36, Issue. 17 , 2014 , pp. 1938-1948 ; ISSN: 15567230 Rezaei, M ; Shadizadeh, S. R ; Vosoughi, M ; Kharrat, R ; Sharif University of Technology
    Abstract
    Typical non-hydrocarbon gases, which have been utilized in miscible and immiscible processes, are carbon dioxide and nitrogen. These gases are usually injected separately and have been rarely utilized together as a tertiary recovery process. In this article, the authors have experimentally focused on sequential carbon dioxide and nitrogen gas injection as a new enhanced oil recovery method. The periodic injections of carbon dioxide and nitrogen have been repeated for six injection pore volumes. Sensitivity analysis of injection pressure, injection volume, and injection rate has also been investigated in core flood experiments. The experimental results have revealed that a sequential miscible... 

    Toward mechanistic understanding of heavy crude oil/brine interfacial tension: The roles of salinity, temperature and pressure

    , Article Fluid Phase Equilibria ; Vol. 375, issue , 2014 , Pages 191-200 ; ISSN: 03783812 Moeini, F ; Hemmati-Sarapardeh, A ; Ghazanfari, M. H ; Masihi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    Injecting low salinity brines is regarded as an enhanced oil recovery (EOR) process through IFT reduction. However, the exact mechanism behind this process is an unsettled and complex issue that has not been well understood yet, especially for heavy crude oil system. Besides, limited information is available regarding the key heavy oil/brine interfacial tension (IFT). The present study aims to investigate the sensitivity of dead heavy crude oil/brine IFT to a wide range of properties/conditions and to reveal the underlying physicochemical mechanisms involved in enhanced oil recovery and IFT reduction by low salinity water injection into heavy oil reservoir. IFT was measured as a function of...