Loading...
Search for: inelastic-behavior
0.009 seconds

    Effect of Soil-Structure Interaction on Practical Design of Ordinary Buildings Based on Iranian Seismic Code

    , M.Sc. Thesis Sharif University of Technology Rezaei Nik, Danial (Author) ; Ghannad, Mohammad Ali (Supervisor)
    Abstract
    In the last few decades Seismic Regulations attitude’s has been undergone significant changes from various aspects. One of these aspects is entering new topics based on the latest scientific achievements. Soil-Structure Interaction terms was from such issues which had found their ways into Seismic codes as an optional effective factor. In recent years, Based on this new attitude and Scientific achievements, Soil-Structure Interaction terms entrance into Iranian seismic code (2800 Standard), is also has been studied. Naturally, applying these criteria will impact on the design and performance of structures, because of reducing effect of soil structure interaction on decreasing base shear... 

    Distribution of seismic damage in steel buildings component equipped by viscoelastic dampers against far-field earthquake

    , Article Shock and Vibration ; Volume 2021 , 2021 ; 10709622 (ISSN) Parvin Darabad, Y ; Hassanpour Yasaghi, A ; Khodaei, B ; Zarei, R ; Sharif University of Technology
    Hindawi Limited  2021
    Abstract
    Damage to structures with the concept of inelastic behavior and consequently hysteresis energy is very close. Therefore, it can be said that hysteresis energy at these levels can be a significant criterion for designing or controlling the structure. In this research, the first three steel frames of 4, 8, and 12 floors with the medium bending frame system have been designed with the statically equivalent method according to valid international regulations; then, all frames have been subjected to nonlinear dynamic analysis by seven accelerometers. The purpose of this study is to investigate the distribution of damage, energy, relative displacement, roof displacement, and base shear in the... 

    The Effect of Rocking Foundation Input Motion on Inelastic Behavior of Multi Degree of Freedom Structures

    , M.Sc. Thesis Sharif University of Technology Hamidi Nakhostin, Hamid Reza (Author) ; Ghannad, Mohammad Ali (Supervisor)
    Abstract
    Non rigidity of the soil beneath the structure, alters elastic and inelastic response of it. This effect is caused by the soil-structure interaction. The effect of soil-structure interaction is studied in two parts, Kinematic interaction and inertial interaction. Among these, kinematic interaction effects are often assumed to be negligible so that even in existing regulations it has been ignored. While the kinematic part of soil-structure interaction effect could produce a rocking input motion that might be important. In recent years, according to expanding usage of performance based design philosophy, researches on inelastic behavior of the soil-structure systems has been done which is... 

    Estimation of Displacement Modification Factor for Soil Structure Systems with Embedded Foundation Structures and Stiffness Degradation Hysteresis Models

    , M.Sc. Thesis Sharif University of Technology Izaddoust, Ali (Author) ; Ghannad, Mohammad Ali (Supervisor)
    Abstract
    The effect of soil structure interaction, on displacement modification factor in constant reduction factors (CR) is evaluated, studied for SDOF structures placed on flexible base modeled by 3DOF system as the base foundation (a sway, a rocking and an internal degree of freedom to see the frequency dependency of dynamic stiffness of soil). 60 records of FEMA-440 for 3 types of soils (B, C and D) are analyzed for 28 different soil-structure conditions, 6 different level of reduction factors, and varied secondary hardening for 2 different hysteresis behavior to see the effect of stiffness hardening. Results are plotted in spectrums to see the role of Tn.
    Final results show that effect of... 

    Equivalent Linear Models for Inelastic Soil-Structure Systems

    , M.Sc. Thesis Sharif University of Technology Esmaeilzadeh Seylabi, Elnaz (Author) ; Ghannad, Mohammad Ali (Supervisor)
    Abstract
    The concept of equivalent linearization in which the actual nonlinear system is substituted by an equivalent linear single-degree-of-freedom (SDOF) system is extended to soil-structure systems with elastic and inelastic behaviors. Equivalent linearization is one of the approximate methods widely used to estimate the response of nonlinear structures in seismic performance based design procedures as a basis of Capacity Spectrum method. Period and damping of equivalent linear model should be evaluated in a way to predict the maximum inelastic displacement demand of the structure with sufficient accuracy. In recent years, comprehensive statistical studies have been performed to improve the... 

    Assessment of Soil-Structure Interaction Regulations in ASCE/SEI 7-10 Standard

    , M.Sc. Thesis Sharif University of Technology Rezaei Sameti, Amir (Author) ; Ghannad, Mohammad Ali (Supervisor)
    Abstract
    Usually the structures are designed based on the fixed-base assumption; however this assumption is not always correct and the bed flexibility should be considered. This effect which is called soil-structure interaction, change the response of structure on both elastic and inelastic behavior. In the regulations for the design of structures on flexible base, generallysoil-structure system is replaced with an equivalent fixed base structure; in the way that the design force of soil-structure system with reasonable accuracy can be estimated by equivalent fixed-base structure. In some regulations, dynamic characteristics of equivalent structure have been determined on elastic state and the... 

    A Study on the Effect of Foundation Uplift on Response of Soil-Structure Systems Using Endurance Time Method

    , M.Sc. Thesis Sharif University of Technology Eshraghi Arani, Marzie (Author) ; Ghannad, Mohammad Ali (Supervisor) ; Esmaeil Pourestekanchi, Homayun (Supervisor)
    Abstract
    In recent decades, the soil-structure effect has been considered in seismic studies. Most of these researches are based on the premise that the foundation is bonded to the ground. However, several examples of structures that experienced uplift have been reported. Uplift affects the soil-structure contribution and nonlinear behavior of the structure. It seems that a parametric study should be done for the simultaneous effects of the soil-structure interaction, foundation uplift and inelastic behavior of the superstructure. Although the most accurate methods to estimate the behavior of structures is the nonlinear time history analysis, this analysis is very time consuming. The endurance time... 

    A Study on Importance of Overstrength Factor in Inelastic Behavior of Soil-Structure Systems

    , M.Sc. Thesis Sharif University of Technology Bakhtiari, Ali (Author) ; Ghannad, Mohammad Ali (Supervisor)
    Abstract
    Recent studies on inelastic behavior of soil-structure systems indicate that seismic design codes provisions, which use the same response modification factor for fixed base structures and soil-structure systems, are not appropriate and could lead to an increase in ductility demand of structures (as a part of soil-structure system). As a result, to reduce design base shear and design forces with regards to collaboration of soil-structure interaction could be in non-conservative manner. In all of these studies, the ductility component of the response modification factor (i.e. Rµ ) has been the major concern and the overstrength component has been ignored. However, the existence of... 

    A parametric study on optimal shape of buckling restrained knee bracing frames

    , Article 5th International Conference on Advances in Steel Structures, ICASS 2007, Singapore, 5 December 2007 through 7 December 2007 ; Volume 3 , 2007 , Pages 356-361 ; 9789810593711 (ISBN) Lotfollahi, M ; Mofid, M ; Sharif University of Technology
    2007
    Abstract
    This paper is concerned with the development of buckling-restrained knee bracing frames for seismic design and retrofit of steel frame structures. Analytical models based on the new nonlinear finite element modeling of the system for the moment and shear yielding mode were developed in a structure with buckling-restrained knee-braces. Parametric study was performed with new and practical parameters of the system describing the specification of the system in elastic and inelastic behavior; and the results are shown in form of the appropriate graphs and charts. This study makes an offer to a simple design technique for this type of structure with a bilinear approach, using a nonlinear finite... 

    Advanced analysis of flexural test results of sealant for solid oxide cells

    , Article International Journal of Applied Ceramic Technology ; Volume 18, Issue 6 , 2021 , Pages 2091-2098 ; 1546542X (ISSN) Fakouri Hasanabadi, M ; Kokabi, A. H ; Faghihi Sani, M. A ; Abdoli, H ; Malzbender, J ; Gross Barsnick, S. M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    The conventional relations for calculating the fracture stresses consider only elastic deformation but ignore viscoelastic and viscoplastic behaviors. Measuring the joining strength of a composite glass sealant-metallic interconnect specimen at solid oxide cell application relevant at high temperatures is a case where such effects can become significant. In the current study, three-point and four-point bending test results were analyzed using the finite element method (FEM) to assess systematic and random errors. It is shown that plastic deformation of the steel interconnect material at high temperature, although having a large effect on the stress distribution in the... 

    Probabilistic Evaluation of Nonlinear Behavior of Fixed- and Flexible-Base Shear Buildings

    , M.Sc. Thesis Sharif University of Technology Abtahi, Shaghayegh (Author) ; Ghannad, Mohammad Ali (Supervisor) ; Mahsoli, Mojtaba (Supervisor)
    Abstract
    This thesis revisits the effect of dynamic soil-structure interaction (SSI) on multistory buildings with a probabilistic approach. For this purpose, the relationship between the strength demands of fixed- and flexible-base multi-degree-of-freedom (MDOF) systems, or strength reduction factor thereof, with that of fixed- and flexible-base equivalent single-degree-of-freedom (eSDOF) systems is investigated considering prevailing uncertainties. To this end, Monte Carlo sampling analysis is employed in which a suite of nearly 2000 records are utilized to properly quantify the ground motion uncertainty. The soil-structure system is modeled by the sub-structure method. The uncertainty in the... 

    Equivalent linearization of non-linear soil-structure systems

    , Article Earthquake Engineering and Structural Dynamics ; Volume 41, Issue 13 , 2012 , Pages 1775-1792 ; 00988847 (ISSN) Esmaeilzadeh Seylabi, E ; Jahankhah, H ; Ghannad, M. A ; Sharif University of Technology
    Wiley  2012
    Abstract
    The concept of equivalent linearization, in which the actual nonlinear structure is replaced by an equivalent linear single-degree-of-freedom (SDOF) system, is extended for soil-structure systems in order to consider the simultaneous effects of soil-structure interaction (SSI) and inelastic behavior of the structure on equivalent linear parameters (ELP). This is carried out by searching over a two-dimensional equivalent period-equivalent damping space for the best pair, which can predict the earthquake response of the inelastic soil-structure system with sufficient accuracy. The super-structure is modeled as an elasto-plastic SDOF system whereas the soil beneath the structure is considered... 

    On the characteristics and seismic study of Hat Knee Bracing system, in steel structures

    , Article Steel and Composite Structures ; Volume 13, Issue 1 , 2012 , Pages 1-13 ; 12299367 (ISSN) Jafar Ramaji, I ; Mofid, M ; Sharif University of Technology
    2012
    Abstract
    In this study, a new structural bracing system named 'Hat Knee Bracing' (HKB) is presented. In this structural system, a special form of diagonal braces, which is connected to the knee elements instead of beam-column joints, is investigated. The diagonal elements provide lateral stiffness during moderate earthquakes. However the knee elements, which is a fuse-like component, is designed to have one plastic joint in the knee elements for dissipation of the energy caused by strong earthquake. First, a suitable shape for brace and knee elements is proposed through elastic studying of the system and several practical parameters are established. Afterward, by developing applicable and highly... 

    Identification of inelastic shear frames using the prandtl-ishlinskii model

    , Article Scientia Iranica ; Volume 16, Issue 1 A , 2009 , Pages 43-49 ; 10263098 (ISSN) Farrokh, M ; Joghataie, A ; Sharif University of Technology
    2009
    Abstract
    In this paper, a new method is proposed for identification of inelastic shear frame structures with hesteresis, using data collected on their dynamic response. It uses the. Prandtl-Ishlinskii rate independent model for hysteresis, which was originally used in the field of plasticity and ferromagnetism. The proposed identification method is capable, of identifying the. mass, damping and restoring force of a frame, structure, which can be. used in forming the. equations of motion of the.frame. By solving the equations of motion, the. dynamic response is predicted. The method is based on the.combined use. of Quadratic Programming (QP) and Genetic Algorithms (GA). First, assuming a set of... 

    On the modal incremental dynamic analysis of reinforced concrete structures, using a trilinear idealization model

    , Article Engineering Structures ; Volume 33, Issue 4 , 2011 , Pages 1117-1122 ; 01410296 (ISSN) Zarfam, P ; Mofid, M ; Sharif University of Technology
    Abstract
    In order to estimate the seismic demands at the performance level, the inelastic behavior of concrete structures should be considered. Incremental dynamic analysis (IDA) based on a nonlinear response time history analysis (NL-RHA) is considered to be the most accurate method in seismic demand calculations. However, modal incremental dynamic analysis (MIDA), based on the equivalent single-degree-of-freedom (SDF) oscillator, is also often used in studying structural engineering performances. As the MIDA method has usually not been applied to reinforced concrete (RC) structures, in this study an attempt is made to investigate the performances of RC frames and to compare the results obtained...