Loading...
Search for: liposomes
0.006 seconds
Total 28 records

    Curcumin delivery and co-delivery based on nanomaterials as an effective approach for cancer therapy

    , Article Journal of Drug Delivery Science and Technology ; Volume 78 , 2022 ; 17732247 (ISSN) Pourmadadi, M ; Abbasi, P ; Eshaghi, M. M ; Bakhshi, A ; Ezra Manicum, A. L ; Rahdar, A ; Pandey, S ; Jadoun, S ; Díez Pascual, A. M ; Sharif University of Technology
    Editions de Sante  2022
    Abstract
    Throughout the world, cancer is one of the main causes of mortality, threatening the public health in many countries. As a result, cancer therapy researchers are paying increasing attention to biocompatible targeted drug delivery systems. Nanocarriers and co-delivery of active drugs is emerging as an essential research field for improving therapeutic efficiency. Although nutraceuticals are now being used to prevent and treat chronic illnesses such as cancers, some have shown limitations concerning solubility, bioavailability, and biodegradability. This review explores different types of nanostructures that can be used as drug delivery systems for curcumin, a biologically active polyphenol... 

    A machine learning framework for predicting entrapment efficiency in niosomal particles

    , Article International Journal of Pharmaceutics ; Volume 627 , 2022 ; 03785173 (ISSN) Kashani Asadi Jafari, F ; Aftab, A ; Ghaemmaghami, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Niosomes are vesicles formed mostly by nonionic surfactant and cholesterol incorporation as an excipient. The drug entrapment efficiency of niosomal vesicles is particularly important and depends on many parameters. Changing the effective parameters to have maximum entrapment efficiency in the laboratory is time-consuming and costly. In this study, a machine learning framework was proposed to address these problems. In order to find the most critical parameter affecting the entrapment efficiency and its optimal value in a specific experiment, data were first extracted from articles of the last decade using keywords of niosome and thin-film hydration method. Then, deep neural network (DNN),... 

    FBAR Syndapin 1 recognizes and stabilizes highly curved tubular membranes in a concentration dependent manner

    , Article Scientific Reports ; Volume 3 , 2013 ; 20452322 (ISSN) Ramesh, P ; Baroji, Y. F ; S. Reihani, S. Nader ; Stamou, D ; Oddershede, L. B ; Bendix, P. M ; Sharif University of Technology
    2013
    Abstract
    Syndapin 1 FBAR, a member of the Bin-amphiphysin-Rvs (BAR) domain protein family, is known to induce membrane curvature and is an essential component in biological processes like endocytosis and formation and growth of neurites. We quantify the curvature sensing of FBAR on reconstituted porcine brain lipid vesicles and show that it senses membrane curvature at low density whereas it induces and reinforces tube stiffness at higher density. FBAR strongly up-concentrates on the high curvature tubes pulled out of Giant Unilamellar lipid Vesicles (GUVs), this sorting behavior is strongly amplified at low protein densities. Interestingly, FBAR from syndapin 1 has a large affinity for tubular... 

    Exploring cellular interactions of liposomes using protein corona fingerprints and physicochemical properties

    , Article ACS Nano ; Volume 10, Issue 3 , 2016 , Pages 3723-3737 ; 19360851 (ISSN) Bigdeli, A ; Palchetti, S ; Pozzi, D ; Hormozi Nezhad, M. R ; Baldelli Bombelli, F ; Caracciolo, G ; Mahmoudi, M ; Sharif University of Technology
    American Chemical Society 
    Abstract
    To control liposomes fate and transport upon contact with biofluids, it is essential to consider several parameters affecting the synthetic and biological identity of liposomes, as well as liposome-protein corona (PC) aspects. As a powerful tool in this data mining adventure, quantitative structure-activity relationship (QSAR) approach is used to correlate physicochemical properties of liposomes and their PC fingerprints to multiple quantified biological responses. In the present study, the relationship between cellular interactions of a set of structurally diverse liposomal formulations and their physicochemical and PC properties has been investigated via linear and nonlinear QSAR models.... 

    Smart liposomal drug delivery for treatment of oxidative stress model in human embryonic stem cell-derived retinal pigment epithelial cells

    , Article International Journal of Pharmaceutics ; Volume 548, Issue 1 , 2018 , Pages 62-72 ; 03785173 (ISSN) Behroozi, F ; Abdkhodaie, M. J ; Sadeghi Abandansari, H ; Satarian, L ; Kazemi Ashtiani, M ; Jaafari, M. R ; Baharvand, H ; Sharif University of Technology
    Abstract
    Oxidative stress has been implicated in the progression of age-related macular degeneration (AMD). Treatment with antioxidants seems to delay progression of AMD. In this study, we suggested an antioxidant delivery system based on redox-sensitive liposome composed of phospholipids and a diselenide centered alkyl chain. Dynamic light scattering assessment indicated that the liposomes had an average size of 140 nm with a polydispersity index below 0.2. The percentage of encapsulation efficiency of the liposomes was calculated by high-performance liquid chromatography. The carriers were loaded with N-acetyl cysteine as a model antioxidant drug. We demonstrated responsiveness of the nanocarrier... 

    Targeted Delivery of Curcumin by Mesoporous Silica Nanoparticle Coated with Liposome

    , M.Sc. Thesis Sharif University of Technology Hedayati, Mohammad Hassan (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor) ; Akbari, Hamid (Supervisor)
    Abstract
    Several studies based on anti- cancer, anti- metastatic and anti- tumor effects of curcumin have been reported . Besides these benefits, the therapeutic efficacy of curcumin is limited due to its poor aqueous solubility, extensive first-pass metabolism, inadequate tissue absorption and degradation at alkaline pH, which severely diminishes its bioavailability. In this project we seek to solve some of the problems with nanoscience to work more effectively. In the past decade, mesoporous silica nanoparticles (MSNs) have found widespread application as controlled drug delivery systems. Recent reports on the design of capped and gated MSN-based systems have shown promise in preventing premature... 

    Liposome Nanoparticles Synthesis in order to Study the Antibiotic Drug Delivery in Simulated Environment of Body

    , M.Sc. Thesis Sharif University of Technology Bahari, Mohsen (Author) ; Alemzadeh, Iran (Supervisor)
    Abstract
    In recent years, much attention has been paid to the preparation of nanoparticles as carriers for drug delivery. Nanoparticle carriers, by changing the pharmacokinetic properties of the drug, improve the function of the drug and reduce its side effects. In the manufacture of nanoparticles, various materials such as polymers, metal particles, lipids, etc. are used to transfer the drugs, which can produce a different shape and size of the particles depending on their production method. The purpose of this project is the synthesis of liposomal nanoparticles (as nano-carriers) to load an antibiotic (Eucalyptus oil) and study the release of the encapsulated drug in the simulated environment of... 

    Vesicle deformations by clusters of transmembrane proteins

    , Article Journal of Chemical Physics ; Volume 134, Issue 8 , 2011 ; 00219606 (ISSN) Bahrami, A. H ; Jalali, M. A ; Sharif University of Technology
    2011
    Abstract
    We carry out a coarse-grained molecular dynamics simulation of phospholipid vesicles with transmembrane proteins. We measure the mean and Gaussian curvatures of our protein-embedded vesicles and quantitatively show how protein clusters change the shapes of their host vesicles. The effects of depletion force and vesiculation on protein clustering are also investigated. By increasing the protein concentration, clusters are fragmented to smaller bundles, which are then redistributed to form more symmetric structures corresponding to lower bending energies. Big clusters and highly aspherical vesicles cannot be formed when the fraction of protein to lipid molecules is large  

    Targeted nanomedicines for the treatment of bone disease and regeneration

    , Article Medicinal Research Reviews ; Volume 41, Issue 3 , 2021 , Pages 1221-1254 ; 01986325 (ISSN) Ordikhani, F ; Zandi, N ; Mazaheri, M ; Luther, G. A ; Ghovvati, M ; Akbarzadeh, A ; Annabi, N ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Targeted delivery by either passive or active targeting of therapeutics to the bone is an attractive treatment for various bone related diseases such as osteoporosis, osteosarcoma, multiple myeloma, and metastatic bone tumors. Engineering novel drug delivery carriers can increase therapeutic efficacy and minimize the risk of side effects. Developmnet of nanocarrier delivery systems is an interesting field of ongoing studies with opportunities to provide more effective therapies. In addition, preclinical nanomedicine research can open new opportunities for preclinical bone-targeted drug delivery; nevertheless, further research is needed to progress these therapies towards clinical... 

    Hybrid ultrasound-activated nanoparticles based on graphene quantum dots for cancer treatment

    , Article International Journal of Pharmaceutics ; Volume 629 , 2022 ; 03785173 (ISSN) Ramedani, A ; Sabzevari, O ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Theranostic liposomes have recently found a broad range of applications in nanomedicine due to stability, the high solubility of biomacromolecules, bioavailability, efficacy, and low adverse effects. However, the limitations of liposomes concerning the short systemic circulation in the body, limited controllability of the release rate, and the inability of in vivo imaging remain challenging. Herein, the development of novel hybrid ultrasound-activated piezoelectric nanoparticles based on a hybrid liposome nanocarrier composed of poly(vinylidene fluoride‐trifluoroethylene), graphene quantum dots (GQDs), and Silibinin (a hydrophobic drug) is presented. The hybrid nanoparticles are an... 

    Numerical Simulation of Drug Delivery to Cancerous Tumors

    , M.Sc. Thesis Sharif University of Technology Hosseinizadeh, Ehsan (Author) ; Dehghani Firoozabadi, Bahar (Supervisor)
    Abstract
    The tumor is a collection of cells (cell mass) caused by the lack or ineffectiveness of cellular proliferation inhibitors. Many types of cancers are associated with the emergence of a tumor, a tissue with specific physiological characteristics. The tumors grow very fast so researchers try to prevent their growth and eventually destroy them. Thermal ablation by MWA(microwave ablation) is a common and minimally-invasive treatment for primary and secondary liver tumors that can not be cured by surgery. During treatment, the tissue is heated by microwaves and at a temperature higher than 50 degree Celsius, destroyed by thermal ablation. In this study, two thermal models have been used to... 

    Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications

    , Article Nanotechnology Reviews ; 2017 ; 21919089 (ISSN) Sahandi Zangabad, P ; Mirkiani, S ; Shahsavari, S ; Masoudi, B ; Masroor, M ; Hamed, H ; Jafari, Z ; Davatgaran Taghipour, Y ; Hashemi, H ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Abstract
    Liposomes are known to be promising nanoparticles (NPs) for drug delivery applications. Among different types of self-assembled NPs, liposomes stand out for their non-toxic nature, and their possession of dual hydrophilic-hydrophobic domains. Advantages of liposomes include the ability to solubilize hydrophobic drugs, the ability to incorporate different hydrophilic and lipophilic drugs at the same time, lessening the exposure of host organs to potentially toxic drugs and allowing modification of the surface by a variety of different chemical groups. This modification of the surface, or of the individual constituents, may be used to achieve two important goals. Firstly, ligands for active... 

    Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications

    , Article Nanotechnology Reviews ; Volume 7, Issue 1 , 2018 , Pages 95-122 ; 21919089 (ISSN) Sahandi Zangabad, P ; Mirkiani, S ; Shahsavari, S ; Masoudi, B ; Masroor, M ; Hamed, H ; Jafari, Z ; Davatgaran Taghipour, Y ; Hashemi, H ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Walter de Gruyter GmbH  2018
    Abstract
    Liposomes are known to be promising nanoparticles (NPs) for drug delivery applications. Among the different types of self-assembled NPs, liposomes stand out for their non-toxic nature and their possession of dual hydrophilic-hydrophobic domains. The advantages of liposomes include the ability to solubilize hydrophobic drugs, the ability to incorporate different hydrophilic and lipophilic drugs at the same time, lessening the exposure of host organs to potentially toxic drugs and allowing modification of the surface by a variety of different chemical groups. This modification of the surface, or of the individual constituents, may be used to achieve two important goals. First, ligands for... 

    The role of polyethylene glycol size in chemical spectra, cytotoxicity, and release of pegylated nanoliposomal cisplatin

    , Article Assay and Drug Development Technologies ; Volume 17, Issue 5 , 2019 , Pages 231-239 ; 1540658X (ISSN) Shirzad, M ; Jamehbozorgi, S ; Akbarzadeh, I ; Aghabozorg, H. R ; Amini, A ; Sharif University of Technology
    Mary Ann Liebert Inc  2019
    Abstract
    This study aimed to synthesize methoxy polyethylene glycol propionaldehyde (mPEG20,000-ALD) for the preparation of PEGylated nanoliposomal cisplatin. Nanocarriers such as liposomes are developed for a wide range of drug delivery systems. PEG with high molecular weight (Mw) is used to coat the liposomes. In this study, simulated Fourier transform infrared (FTIR) spectra of mPEG-ALD were obtained using density functional theory (DFT) calculations and then compared with actual FTIR spectrum of mPEG20,000-ALD (Mw = 20 kDa). We found that the intensity of C = O stretching vibration at 1,700 cm-1 related to the carbonyl functional group of mPEG20,000-ALD was very weak. The results of DFT... 

    Preparation, physicochemical properties, in vitro evaluation and release behavior of cephalexin-loaded niosomes

    , Article International Journal of Pharmaceutics ; Volume 569 , 2019 ; 03785173 (ISSN) Ghafelehbashi, R ; Akbarzadeh, I ; Tavakkoli Yaraki, M ; Lajevardi, A ; Fatemizadeh, M ; Heidarpoor Saremi, L ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, optimized cephalexin-loaded niosomal formulations based on span 60 and tween 60 were prepared as a promising drug carrier system. The niosomal formulations were characterized using a series of techniques such as scanning electron microscopy, Fourier transformed infrared spectroscopy, dynamic light scattering, and zeta potential measurement. The size and drug encapsulation efficiency are determined by the type and composition of surfactant. The developed niosomal formulations showed great storage stability up to 30 days with low change in size and drug entrapment during the storage, making them potential candidates for real applications. Moreover, the prepared niosomes showed... 

    Optimization, physicochemical characterization, and antimicrobial activity of a novel simvastatin nano-niosomal gel against E. coli and S. aureus

    , Article Chemistry and Physics of Lipids ; Volume 234 , 2021 ; 00093084 (ISSN) Akbarzadeh, I ; Keramati, M ; Azadi, A ; Afzali, E ; Shahbazi, R ; chiani, M ; Norouzian, D ; Bakhshandeh, H ; Sharif University of Technology
    Elsevier Ireland Ltd  2021
    Abstract
    Niosomes, as a kind of drug delivery system, is widely used for the topical delivery of lipophilic drugs. Optimization of niosomes plays an essential role in enhancing their therapeutic efficiencies. This study aims to prepare an optimized niosomal formulation of simvastatin (nSIM), a lipophilic member of statins, through the experiment (Response Surface methodology). Optimized niosomes were characterized in size, polydispersity index (PDI), entrapment efficiency (EE), stability, releasing pattern, and antimicrobial activity. The different molar ratio of surfactant and cholesterol were applied to prepare various formulation of simvastatin loaded niosome. Mean particle size and size... 

    Optimization, physicochemical characterization, and antimicrobial activity of a novel simvastatin nano-niosomal gel against E. coli and S. aureus

    , Article Chemistry and Physics of Lipids ; Volume 234 , 2021 ; 00093084 (ISSN) Akbarzadeh, I ; Keramati, M ; Azadi, A ; Afzali, E ; Shahbazi, R ; chiani, M ; Norouzian, D ; Bakhshandeh, H ; Sharif University of Technology
    Elsevier Ireland Ltd  2021
    Abstract
    Niosomes, as a kind of drug delivery system, is widely used for the topical delivery of lipophilic drugs. Optimization of niosomes plays an essential role in enhancing their therapeutic efficiencies. This study aims to prepare an optimized niosomal formulation of simvastatin (nSIM), a lipophilic member of statins, through the experiment (Response Surface methodology). Optimized niosomes were characterized in size, polydispersity index (PDI), entrapment efficiency (EE), stability, releasing pattern, and antimicrobial activity. The different molar ratio of surfactant and cholesterol were applied to prepare various formulation of simvastatin loaded niosome. Mean particle size and size... 

    Simvastatin-loaded nano-niosomes confer cardioprotection against myocardial ischemia/reperfusion injury

    , Article Drug Delivery and Translational Research ; Volume 12, Issue 6 , 2022 , Pages 1423-1432 ; 2190393X (ISSN) Naseroleslami, M ; Mousavi Niri , N ; Akbarzade, I ; Sharifi, M ; Aboutaleb, N ; Sharif University of Technology
    Springer  2022
    Abstract
    Although simvastatin (SIM) has been proven to be a powerful agent against myocardial ischemia/reperfusion (MI/R) injury, poor water solubility, short half-life, and low bioavailability have made it futile while using conventional drug delivery system. Hence, this study aims to investigate therapeutic efficacy of SIM-loaded nano-niosomes on MI/R injury. Surface active agent film hydration method was used to synthesize nano-niosomes. The physicochemical properties of nano-niosomes were characterized using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Moreover, niosomes were characterized in entrapment efficiency (EE) and releasing pattern. Male Wistar rats were... 

    Niosomal formulation for antibacterial applications

    , Article Journal of Drug Targeting ; Volume 30, Issue 5 , 2022 , Pages 476-493 ; 1061186X (ISSN) Mehrarya, M ; Gharehchelou, B ; Haghighi Poodeh, S ; Jamshidifar, E ; Karimifard, S ; Farasati Far, B ; Akbarzadeh, I ; Seifalian, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Infection is a disease that is mainly caused by different Gram-negative and Gram-positive bacteria. Treatment of infections requires a considerable amount of antibiotics, which can cause serious damage to the patient's body. Delivering the antibiotic only to the site of infection can prevent these destructive effects, such as the destruction of the normal intestinal flora. The drug delivery system through carriers will take antibiotics into a part of the body involved in the disease. Niosome nanoparticles, which have been made from non-ionic surfactants, have been emerging as ideal drug/antibiotics delivery vehicles. Recently, niosome formulations have been targeted to reduce toxicity and... 

    Targeted Theranostic Delivery System Based on Liposomes Containing Graphene Quantum Dots and Drug Nanoparticles For Monitoring and Treatment of Breast Cancer

    , Ph.D. Dissertation Sharif University of Technology Ramedani, Arash (Author) ; Simchi, Abdolreza (Supervisor) ; Sabzevari, Omid (Supervisor)
    Abstract
    Theranostic liposomes have recently found a broad range of applications in nanomedicine due to stability, the high solubility of biomacromolecules, bioavailability, efficacy, and low adverse effects. However, the limitations of liposomes concerning the short systemic circulation in the body, limited controllability of the release rate, and the inability of in vivo imaging remain challenging. Herein, the development of novel hybrid ultrasound-activated piezoelectric nanoparticles based on a hybrid liposome nanocarrier composed of poly(vinylidene fluoride‐trifluoroethylene), graphene quantum dots (GQDs), and Silibinin (a hydrophobic drug) is presented. The hybrid nanoparticles are an...