Loading...
Search for: microgyroscope
0.004 seconds

    Design and Simulation (& Manufacturing) of A Micro-Gyroscope

    , M.Sc. Thesis Sharif University of Technology Soltani, Arman (Author) ; Akbari, Javad (Supervisor)
    Abstract
    Nowadays, microgyroscopes are among the most important products of MEMS. The production of small, precise and inexpensive gyroscopes has become possible as the result of recent developments in fabrication technology. In this thesis it is intended to introduce a new method for manufacturing more precise microgyroscopes regarding manufacture facilities. Using this new method, sensitivity and resistance of microgyroscopes are increased against noises which are primarily caused by vibration and rotation about undesirable axes. The rotational movement imposed on the gyro is detected through fluid flow within its torus channel. This transformation facilitates the measurement of the initial motion.... 

    “Static and Dynamic Analysis of Vibrating Ring Gyroscopes based on the Strain Gradient Theory”

    , Ph.D. Dissertation Sharif University of Technology Karimzadeh, Ali (Author) ; Ahmadian, Mohammad Taghi (Supervisor) ; Firoozbakhsh, Kikhosro (Supervisor) ; Rahaeifard, Massuod (Co-Advisor)
    Abstract
    Vibrating ring gyroscopes (VRG) as MEMS devices are employed to micro scale systems for determination of the rotation rate and rotation speed of them. It is experimentally approved that micro scale structures behaves differently in comparison to macro scale systems, Therefore higher order continuum theories are required for modeling and analysis of these systems. In addition to that there is no comprehensive investigation on the dynamic performance of ring gyroscopes in the literature, In view of this in the present research the static and dynamic analysis of vibrating ring gyroscopes based on the strain gradient theory and the proposed finite element model of the gyroscope is performed. The... 

    Dynamic modeling and performance evaluation of a vibrating beam microgyroscope under general support motion

    , Article Journal of Sound and Vibration ; Volume 301, Issue 1-2 , 2007 , Pages 146-164 ; 0022460X (ISSN) Esmaeili, M ; Jalili, N ; Durali, M ; Sharif University of Technology
    Academic Press  2007
    Abstract
    A general modeling framework is presented for the development of the frequency equation of a microgyroscope, which is modeled as a suspended cantilever beam with a tip mass under general base excitation. Specifically, the beam is considered to vibrate in all the three directions, while subjected to a base rotational motion around its longitudinal direction. This is a common configuration utilized in many vibrating beam gyroscopes and well drilling systems. The governing equations are derived by using the Extended Hamilton's Principle with a general 6-dof base motion. The natural frequency equation is then extracted in a closed-form for the case where the beam support undergoes longitudinal... 

    Ring microgyroscope modeling and performance evaluation

    , Article JVC/Journal of Vibration and Control ; Volume 12, Issue 5 , 2006 , Pages 537-553 ; 10775463 (ISSN) Esmaeili, M ; Durali, M ; Jalili, N ; Sharif University of Technology
    2006
    Abstract
    This paper discusses the effects of substrate motions on the performance of microgyroscopes modeled as ring structures. Using the Extended Hamiltonian Principle, the equations of motion of a ring micro-gyroscope are derived, and the natural frequency equation and response characteristics are extracted in closed form for the case where the substrate undergoes normal rotation. The Galerkin approximation is then used to arrive at the ordinary differential equations of motion for the ring. In these equations, the effects of angular, centripetal and Coriolis accelerations are all apparent. The response of the system to different inputs is studied and the system sensitivity to variation in input... 

    Ring microgyroscope modeling and performance evaluation

    , Article 2005 ASME International Mecahnical Engineering Congress and Exposition, IMECE 2005, Orlando, FL, 5 November 2005 through 11 November 2005 ; Volume 7 MEMS , 2005 , Pages 241-247 ; 1096665X (ISSN); 079184224X (ISBN); 9780791842249 (ISBN) Esmaeili, M ; Durali, M ; Jalili, N ; Sharif University of Technology
    2005
    Abstract
    This paper discusses the effects of substrate motions on the performance of a microgyroscope modeled as a ring structure. Using Extended Hamilton's Principle, the equations of motion are derived. The natural frequency equation and response of gyroscope are then extracted in closed-form for the case where substrate undergoes normal rotation. The Galerkin approximation is used for discretizing the partial differential equations of motion into ordinary differential equations. In these equations, the effects of angular accelerations, centripetal and coriolis accelerations are well apparent. The response of the system to different inputs is studied and the system sensitivity to input parameter... 

    Dynamic modeling and performance evaluation of a vibrating cantilever beam microgyroscope

    , Article DETC2005: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, 24 September 2005 through 28 September 2005 ; Volume 1 A , 2005 , Pages 137-144 ; 0791847381 (ISBN); 9780791847381 (ISBN) Esmaeili, M ; Durali, M ; Jalili, N ; Sharif University of Technology
    American Society of Mechanical Engineers  2005
    Abstract
    This paper discusses the effects of substrate motions on the performance of microgyroscopes modeled as suspended beams with a tip mass. The substrate movements can be motions along as well as rotations around the three axes. Using Extended Hamiltonian Principle and Galerkin approximation, the equations of the motion of the beam are analytically derived. In these equations, the effects of beam distributed mass, tip mass, angular accelerations, centripetal and coriolis accelerations are clearly apparent. The effect of electrostatic forces inducing the excitation vibrations are considered as linear functions of beam displacement. The response of the system to different inputs is studied and the... 

    Dynamic pull-in instability and vibration analysis of a nonlinear microcantilever gyroscope under step voltage considering squeeze film damping

    , Article International Journal of Applied Mechanics ; Volume 5, Issue 3 , September , 2013 ; 17588251 (ISSN) Mojahedi, M ; Ahmadian, M. T ; Firoozbakhsh, K ; Sharif University of Technology
    2013
    Abstract
    In this paper, a nonlinear model is used to analyze the dynamic pull-in instability and vibrational behavior of a microcantilever gyroscope. The gyroscope has a proof mass at its end and is subjected to nonlinear squeeze film damping, step DC voltages as well as base rotation excitation. The electrostatically actuated and detected microgyroscopes are subjected to coupled flexural-flexural vibrations that are related by base rotation. In order to detune the stiffness and natural frequencies of the system, DC voltages are applied to the proof mass electrodes in drive and sense directions. Nonlinear integro differential equations of the system are derived using extended Hamilton principle... 

    Oscillatory behavior of an electrostatically actuated microcantilever gyroscope

    , Article International Journal of Structural Stability and Dynamics ; Volume 13, Issue 6 , 2013 ; 02194554 (ISSN) Mojahedi, M ; Ahmadian, M. T ; Firoozbakhsh, K ; Sharif University of Technology
    2013
    Abstract
    This paper is concerned with the study of the oscillatory behavior of an electrostatically actuated microcantilever gyroscope with a proof mass attached to its free end. In mathematical modeling, the effects of different nonlinearities such as electrostatic forces, fringing field, inertial terms and geometric nonlinearities are considered. The microgyroscope is subjected to bending oscillations around the static deflection coupled with base rotation. The primary oscillation is generated in drive direction of the microgyroscope by a pair of DC and AC voltages on the tip mass. The secondary oscillation occurring in the sense direction is induced by the Coriolis coupling caused by the input... 

    Static deflection and pull-in instability analysis of an electrostatically actuated mirocantilever gyroscope considering geometric nonlinearities

    , Article Journal of Mechanical Science and Technology ; Volume 27, Issue 8 , 2013 , Pages 2425-2434 ; 1738494X (ISSN) Mojahedi, M ; Ahmadian, M. T ; Firoozbakhsh, K ; Sharif University of Technology
    2013
    Abstract
    In this paper, a mathematical modeling of a microcantilever gyroscope is presented considering the nonlinearities of the system due to electrostatic forces, fringing field, geometry and the inertial terms. The microgyroscope is actuated and detected by electrostatic methods and subjected to coupled bending oscillations. First a system of two nonlinear integro-differential equations is derived which describes flexural-flexural motion of electrostatically actuated and detected microbeam gyroscopes. Afterward, static deflection and pull-in instability of the microgyroscopes acted upon by DC voltages in both (driving and sensing) directions are studied for different parameters. The model's... 

    Oscillatory behavior of the nonlinear clamped-free beam microgyroscopes under electrostatic actuation and detection

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 10 , 2013 ; 9780791856390 (ISBN) Mojahedi, M ; Firoozbakhsh, K ; Ahmadian, M. T ; Barari, A ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    Vibratory micromachined gyroscopes use suspending mechanical parts to measure rotation. They have no gyratory component that require bearings, and for this reason they can be easily miniaturized and batch production using micromachining methods. They operate based on the energy interchange between two modes of structural vibration. The objective of this paper is to study the oscillatory behavior of an electrostatically actuated vibrating microcantilever gyroscope with proof mass at its end. In the modelling, the effects of different nonlinearities, fringing field and base rotation are considered. The microgyroscope is subjected to coupled bending oscillations around the static deflection... 

    The oscillatory behavior of doubly clamped microgyroscopes under electrostatic actuation and detection

    , Article Proceedings of the ASME Design Engineering Technical Conference ; Volume 1 , 2013 ; 9780791855843 (ISBN) Mojahedi, M ; Firoozbakhsh, K ; Ahmadian, M. T ; Computers and Information in Engineering Division; Design Engineering Division ; Sharif University of Technology
    American Society of Mechanical Engineers  2013
    Abstract
    In MEMS gyroscopes, it is essential to use matched resonance frequencies of the drive and sense vibrational modes for improving the sensitivity. For this end, the natural frequencies can be tuned by voltages. In this study, a new model is utilized to determine the natural frequencies of the doubly clamped beam microgyroscope. In the model, nonlinear electrostatic forces, fringing fields and mid-plane stretching of thebeam are considered. The system is actuated and sensed by electrostatic force and its natural frequencies and stiffness are detuned by DC voltages. The oscillatory problem of the gyroscope is analytically solved versus DC voltages for different design parameters. Copyright  

    Modeling and vibration analysis of vibrating beam microgyroscopes under longitudinal rotation of the support

    , Article 2005 ASME International Mecahnical Engineering Congress and Exposition, IMECE 2005, Orlando, FL, 5 November 2005 through 11 November 2005 ; Volume 7 MEMS , 2005 , Pages 345-351 ; 1096665X (ISSN); 079184224X (ISBN); 9780791842249 (ISBN) Esmaeili, M ; Durali, M ; Jalili, N ; ASME Micro Electro Mecahnical Systems Division ; Sharif University of Technology
    2005
    Abstract
    This paper discusses the effects of substrate motions on the performance of a microgyroscope modeled as a suspended beam with a tip mass. These motions can be either along or around the three axes. Using the Extended Hamilton's Principle, the equations of motion are derived. In these equations, the effects of beam distributed mass, tip mass, angular accelerations, centripetal and coriolis accelerations are well apparent. The effect of electrostatic forces inducing the excitation vibrations are considered as linear functions of beam displacement. The response of the system to different inputs is studied and the system sensitivity to input parameter changes are examined. Finally, the sources... 

    Characterization of static behavior of a nonlinear doubly clamped microbeam under electrostatic actuation and detection

    , Article Proceedings of the ASME Design Engineering Technical Conference ; Volume 1 , August , 2013 ; 9780791855843 (ISBN) Ahmadian, M. T ; Barari, A ; Mojahedi, M ; Firoozbakhsh, K ; Sharif University of Technology
    American Society of Mechanical Engineers  2013
    Abstract
    In this study, the static deflection and pull-in instability of the doubly clamped microbeam with a mass attached to its midpoint are investigated. Nonlinear electrostatic forces, fringing fields, base rotation and mid-plane stretching of the beam in this model are considered. First, a system of two nonlinear integro-differential equations are expressed in partial derivatives which describe coupled flexural-flexural motion of electrostatically actuated microbeam gyroscopes under rotation. Then static deflection and pull-in instability of the microgyroscopes acted upon by DC voltages in both (direction and sensing) directions are studied. The equations of static motion are reduced by...