Loading...
Search for: nonholonomic-constraints
0.006 seconds

    Path-planning and Control of Space Robots

    , M.Sc. Thesis Sharif University of Technology Nasiri, Mahdi (Author) ; Namvar, Mehrzad (Supervisor)
    Abstract
    Control of many mechanical systems such as satellites lies on the control of space robots. Control of space robots has many theoric complexities because of the presence of non-holonomic constraints due to angular momentum conservation. Unlike fixed-base robots, any movement of space robots manipulator has a reaction on the robot base and moves it. Thus manipulator’s movement toward desired configuration rotates the robot base and as a result appropriate attitude may not be attained. Therefore an appropriate path is required to achieve the desired configuration and the base attitude reaches its desired value. In this thesis, first the dynamic of space robots and the interaction between the... 

    A recursive approach for analysis of snake robots using Kane's equations

    , Article DETC2005: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, 24 September 2005 through 28 September 2005 ; Volume 7 B , 2005 , Pages 855-861 ; 0791847446 (ISBN) Tavakoli Nia, H ; Pishkenari, H. N ; Meghdari, A ; Sharif University of Technology
    2005
    Abstract
    This paper presents a recursive approach for solving kinematic and dynamic problem in snake-like robots using Kane's equations. An n-link model with n-nonholonomic constraints is used as the snake robot model in our analysis. The proposed algorithm which is used to derive kinematic and dynamic equations recursively enhances the computational efficiency of our analysis. Using this method we can determine the number of additions and multiplications as a function of n. The proposed method is compared with the Lagrange and Newton-Euler's method in three different aspects: Number of operations, CPU time and error in the computational procedures. Copyright © 2005 by ASME  

    An effective approach for dynamic analysis of rovers

    , Article Robotica ; Volume 23, Issue 6 , 2005 , Pages 771-780 ; 02635747 (ISSN) Meghdari, A ; Karimi, R ; Pishkenari, H. N ; Gaskarimahalle, A. L ; Mahboobi, S. H ; Sharif University of Technology
    2005
    Abstract
    In this paper a novel approach to dynamic formulation of rovers has been presented. The complexity of these multi-body systems especially on rough terrain, challenged us to use the Kane's method which has been preferred to others in these cases. As an example, symbolic equations of a six-wheeled rover, named CEDRA Rescue Robot which uses a shrimp like mechanism, have been derived and a simulation of forward and inverse dynamics has been presented. Due to the clear form of equations, each term defines a physical meaning which represents the effect of each parameter, resulting in a frame-work for performance comparison of rovers. Although the method has been described for a 2-D non-slipping... 

    A recursive approach for the analysis of snake robots using Kane's equations

    , Article Robotica ; Volume 24, Issue 2 , 2006 , Pages 251-256 ; 02635747 (ISSN) Tavakoli Nia, H ; Pishkenari, H. N ; Meghdari, A ; Sharif University of Technology
    2006
    Abstract
    This paper presents a recursive approach for solving kinematic and dynamic problems in snake-like robots using Kane's equations. An n-link model with n-nonholonomic constraints is used as the snake robot model in our analysis. The proposed algorithm which is used to derive kinematic and dynamic equations recursively, enhances the computational efficiency of our analysis. Using this method we can determine the number of additions and multiplications as a function of n. The proposed method is compared with the Lagrange and Newton-Euler's method in three different aspects: Number of operations, CPU time and error in the computational procedures. © 2006 Cambridge University Press  

    Target Tracking Using Multi-Agent Systems With Inertial and Non-Holonomic Agents

    , M.Sc. Thesis Sharif University of Technology Roshanghalb, Farhad (Author) ; Sayyaadi, Hassan (Supervisor)
    Abstract
    Behavioral investigation and control of multi-agent systems was one of the most attractive problems in robotics which has been studied since the middle of 20th century. Tracking a target is shown by many organic mechanisms during hunting and etc. and is one of the important topics of researches. In this thesis tracking a target by a multi-agent system has been considered which the agents are wheeled mobile robots and have non-holonomic motion constraints. A sample dimensionless and continuous time synchronous dynamic is proposed for the motion of these agents and the goal is to track a moving target while the agents create and keep a desired formation during their tracking process.... 

    Design and Implementation of Nonsmooth Controller for Mechanical Systems under Nonholonomic Constraint

    , M.Sc. Thesis Sharif University of Technology Jafari Harandi, Mohammad Reza (Author) ; Namvar, Mehrzad (Supervisor)
    Abstract
    This thesis works on certain type of underactuated mechanical systems with nonholonomic constrain, namely wheeled robots.Since this robots has different types, this work focuses specifically on three-wheeled robot. At first we know kinematic characteristics of robot system and equations of motion.To control this system, at first we will change equations to chain form, then control it by using known methods. It will be shown that between the known methods for convergence to a fixed point,irregular transformation is the best way for control systems in chain form.Also, with dynamic feedback linearization we can control robot on a trajectory that has a continuous third order derivatives. Then... 

    A Path Planning Method Based on Basic RRT* Algorithm and Cagd-Based Curves Ffor Non-Holonomic Wheeled Mobile Robots

    , M.Sc. Thesis Sharif University of Technology Eshtehardian, Ali (Author) ; Khodaygan, Saeed (Supervisor)
    Abstract
    Throughout recent decades, one of the most important and challenging problems in robotics has been robot's path planning. Path planning means a robot must find its way from start to the goal point and track it without any collision to the obstacles. For this aim during the recent decades a wide variety of algorithms such as A*, Dijkstra and … have been proposed that some of which generate an optimal path as their output while others tend to create only a path regardless of its optimality. One of the most practical path planning methods is RRT algorithm which is executable in real-world applications, and by generating some nodes randomly then creating a tree-based graph, thereby outputting a... 

    A novel computer-oriented dynamical approach with efficient formulations for multibody systems including ignorable coordinates

    , Article Applied Mathematical Modelling ; Volume 62 , 2018 , Pages 461-475 ; 0307904X (ISSN) Nejat Pishkenari, H ; Heidarzadeh, S ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    Based on Lagrangian mechanics, we present a novel and computationally efficient set of equations of motion in the matrix notation, for unconstrained or constrained mechanical systems including ignorable coordinates. The equations are applicable to multibody systems including holonomic or nonholonomic constraints. It is shown that by appropriate selection of generalized speeds as a new set of motion variables, the constraint reaction forces can be automatically eliminated from the set of developed reduced dynamical equations in a straightforward manner, resulting in a minimal set of dynamic equations. We present simulation results on one constrained and one unconstrained system to demonstrate...