Loading...
Search for: oil-well-flooding
0.006 seconds
Total 145 records

    Percolation-based effective permeability estimation in real heterogeneous porous media

    , Article 15th European Conference on the Mathematics of Oil Recovery, 29 August 2016 through 1 September 2016 ; 2016 ; 9462821933 (ISBN); 9789462821934 (ISBN) Masihi, M ; Gago, P ; King, P ; DCSE; Schlumberger; Shell ; Sharif University of Technology
    European Association of Geoscientists and Engineers 
    Abstract
    It has long been understood that flow behavior in heterogeneous porous media is largely controlled by the continuity of permeability contrasts. With this in mind, we are looking in new methods for a fast estimation of the effective permeability which concentrates on the properties of the percolating cluster. From percolation concepts we use a threshold permeability value (Kth) by which the gridblocks with the highest permeability values connect two opposite side of the system in the direction of the flow. Those methods can be applied to heterogeneous media of a range of permeabilities distribution and various underlying structures. We use power law relations and weighted power averages that... 

    Effect of connectivity misrepresentation on accuracy of upscaled models in oil recovery by CO2 injection

    , Article Greenhouse Gases: Science and Technology ; Volume 6, Issue 3 , 2016 , Pages 339-351 ; 21523878 (ISSN) Ganjeh Ghazvini, M ; Masihi, M ; Baghalha, M ; Sharif University of Technology
    Blackwell Publishing Ltd  2016
    Abstract
    An upscaling method such as renormalization converts a detailed geological model to a coarse one. Although flow equations can be solved faster on a coarse model, its results have more errors. Numerical dispersion, heterogeneity loss, and connectivity misrepresentation are the factors responsible for errors. Connectivity has a great effect on the fluid distribution and leakage pathways in EOR processes or CO2 storage. This paper deals with the description and quantification of connectivity misrepresentation in the upscaling process. For detection of high-flow regions, the flow equations are solved under simplified single-phase conditions. These regions are recognized as the cells whose fluxes... 

    Multi-criterion based well placement and control in the water-flooding of naturally fractured reservoir

    , Article Journal of Petroleum Science and Engineering ; Volume 149 , 2017 , Pages 675-685 ; 09204105 (ISSN) Bagherinezhad, A ; Boozarjomehry Bozorgmehry, R ; Pishvaie, M. R ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    In the optimization of naturally fractured reservoirs, it is required to take into account their complex flow behavior due to high conductivity fractures. In this regard, the possible effects of fractures must be included in the optimization procedure. In a water-flooding project, fast water breakthrough from injection to production wells may be occurred because of high permeability fractures. To consider the effect of the fracture system, a multi-criterion optimization procedure is proposed in this work. For this contribution, Non-dominated Sorting Genetic Algorithm version II (NSGA-II) is implemented for the optimization purposes. Considering the effect of the fracture system on the flow... 

    Monitoring the effect of discontinuous shales on the surfactant flooding performance in heavy oil reservoirs using 2D glass micromodels

    , Article Petroleum Science and Technology ; Vol. 32, issue. 12 , Apr , 2014 , p. 1404-1417 ; ISSN: 10916466 Mohammadi, S ; Kharrat, R ; Masihi, M ; Ghazanfari, M. H ; Saidian, M ; Sharif University of Technology
    Abstract
    Although most heavy oil reservoirs contain discontinuous shaly structures, there is a lack of fundamental understanding how the shaly structures affect the oil recovery efficiency, especially during surfactant flooding to heavy oils. Here, an experimental study was conducted to examine the effect of discontinuous shales on performance of surfactant flooding by introducing heterogeneities to represent streaks of shale in five-spot glass micromodels. Results show that oil recovery in presence of shale streak is lower than in its absence. Based on the authors' observations, the presence of flow barriers causes premature breakthrough of injected fluids and also an unstable displacement front. As... 

    Experimental investigation of flooding hydrolyzed-sulfonated polymers for EOR process in a carbonate reservoir

    , Article Petroleum Science and Technology ; Vol. 32, issue. 9 , Mar , 2014 , p. 1114-1122 ; ISSN: 10916466 Bamzad, S ; Nourani, M ; Ramazani, A ; Masihi, M ; Sharif University of Technology
    Abstract
    The main purposes of this study were to scrutinize experimentally effects of polymer and rock types on the oil recovery using water and polymer flooding processes. Four dynamic flooding experiments were carried out at simulated reservoir condition of temperature and pressure. According to the obtained results, the ultimate oil recovery by water flooding in highly fractured reservoirs was less than reservoirs with the microfractures. The results of polymer flooding showed that in addition the polymer molecular weight, the sulfonation of polymers also affects the oil recovery  

    Investigation of diffusion and deposition of TiO2 nanoparticles in sandstone rocks for EOR application

    , Article 76th European Association of Geoscientists and Engineers Conference and Exhibition 2014: Experience the Energy - Incorporating SPE EUROPEC 2014 ; 19 June , 2014 , pp. 1031-1035 Ehtesabi, H ; Ahadian, M. M ; Taghikhani, V ; Sharif University of Technology
    Abstract
    The diffusion and deposition of TiO2 nanoparticles in EOR application was investigated in this paper. TEM image of nanoparticles showed that the particles are elongated with average long and short axis sizes of 54 and 15 nm. Water flooding tests showed that the recovery factor can be improved from 49% to 80% using TiO2 nanoparticles. Viscosity and interfacial tension measurements showed that by using TiO2 nanoparticles the viscosity of injected fluid and interfacial tension do not change significantly and can not explain the change in recovery factor. Contact angle measurements showed that nanoparticles deposition changed the wettability of the rock surface from oil-wet to water-wet. SEM... 

    Experimental investigation of water alternating CH4-CO 2 mixture gas injection in light oil reservoirs

    , Article International Journal of Oil, Gas and Coal Technology ; Vol. 8, issue. 1 , 2014 , p. 31-40 Alizadeh, A ; Ghazanfari, M. H ; Taghikhani, V ; Badakhshan, A ; Sharif University of Technology
    Abstract
    This paper studies a WAG process for improving the recovery efficiency in light oil reservoirs. Until now, few references have reported the role of CO2 mole percent on recovery improvement in light oil reservoirs. The injected gas was changed, and the effect of composition changes on performance of core flood experiments were conducted at fixed flow rate. Five series of experiments (varied in methane mole percentages, 0, 25, 50, and 75, 100) were systematically examined. The results indicated that the oil recovery efficiency improved with the increasing of CO2 mole ratio and there was also maximum recovery efficiency in this work. That would be helpful to better understanding the role of CO2... 

    An experimental investigation of surfactant flooding as a good candidate for enhancing oil recovery from fractured reservoirs using one-quarter five spot micromodels: The role of fracture geometrical properties

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 35, Issue 20 , 2013 , Pages 1929-1938 ; 15567036 (ISSN) Kianinejad, A ; Ghazanfari, M. H ; Kharrat, R ; Rashtchian, D ; Sharif University of Technology
    2013
    Abstract
    Surfactant flooding is known to lower the interfacial tension and, hence, reduces capillary forces responsible for trapping oil. Despite numerous experimental studies, little is known about the role of fracture geometrical properties on oil recovery efficiency during surfactant floods, especially in five-spot systems. In addition, application of sodium dodecyl sulfate for oil recovery in fractured media is not discussed well. In this study, two types of surfactant solutions have been injected into micromodels, which were initially saturated with crude oil, having different length, orientation, and distribution of fractures under oil-wet conditions. Precise analyses of continuously recorded... 

    Experimental investigation of microscopic/macroscopic efficiency of polymer flooding in fractured heavy oil five-spot systems

    , Article Journal of Energy Resources Technology, Transactions of the ASME ; Volume 135, Issue 3 , 2013 ; 01950738 (ISSN) Sedaghat, M. H ; Ghazanfari, M. H ; Parvazdavani, M ; Morshedi, S ; Sharif University of Technology
    2013
    Abstract
    This paper concerns on experimental investigation of biopolymer/polymer flooding in fractured five-spot systems. In this study, a series of polymer injection processes were performed on five-spot glass type micromodels saturated with heavy crude oil. Seven fractured glass type micromodels were used to illustrate the effects of polymer type/concentration on oil recovery efficiency in presence of fractures with different geometrical properties (i.e., fractures orientation, length and number of fractures). Four synthetic polymers as well as a biopolymer at different levels of concentration were tested. Also a micromodel constituted from dead-end pores with various geometrical properties was... 

    On the route discovery rate of flooding in large wireless networks

    , Article IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC ; 2012 , Pages 1238-1242 ; 9781467325691 (ISBN) Shah-Mansouri, H ; Khalaj, B. H ; Shariatpanahi, S. P ; Sharif University of Technology
    2012
    Abstract
    In this paper, we derive the rate of route discovery process for finding a randomly chosen destination in large wireless networks. The well-known protocol for route discovery is flooding in which each node simply rebroadcasts the route request packet once. Rate of route discovery process is defined as the inverse of time between transmitting two successive route request packets which shows how fast a node can request a route to its destination. Discovery time is another parameter of interest. For a single node discovering routes to its destination, at most the rate of Eθ (1/3√n) is feasible when n identical nodes are optimally placed in network area and the discovery time is of order... 

    Quantifying the role of pore geometry and medium heterogeneity on heavy oil recovery during solvent/Co-solvent flooding inwater-wet systems

    , Article Journal of Porous Media ; Volume 14, Issue 4 , 2011 , Pages 363-373 ; 1091028X (ISSN) Dehghan, A. A ; Kharrat, R ; Ghazanfari, M. H ; Vossoughi, S ; Sharif University of Technology
    Abstract
    Porous medium characteristics (e.g., pore geometry and medium heterogeneity) as well as the chemical nature of the co-solvents crucially affect the oil displacement efficiency during solvent flooding processes. In this work, initially saturated models with heavy crude oil were used to perform a series of solvent injection experiments. Several onequarter five-spot micromodels with pre-designed pore geometry were constructed and used. In addition, rock-look-alike flow patterns generated from thin sections of sandstone and dolomite reservoir rocks were etched onto glass plates to form micromodels mimicking the pore geometry and heterogeneity of these rocks. Four different groups of chemicals... 

    Experimental Investigation on the Effect of Asphaltene Types on the Interfacial Tension of CO2-Hydrocarbon Systems

    , Article Energy and Fuels ; Volume 29, Issue 12 , 2015 , Pages 7941-7947 ; 08870624 (ISSN) Mahdavi, E ; Zebarjad, F. S ; Ayatollahi, S ; Taghikhani, V ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    Interfacial tension (IFT) is known as the critical parameter affecting the efficiency of CO2 flooding during the enhanced oil recovery (EOR) process. Besides, the asphaltene precipitation phenomenon is reported as the most significant problem during CO2 injection into asphaltenic oil reservoirs. Accordingly, it is important to examine the effect of asphaltene precipitation on the IFT behavior of the oil-CO2 system at reservoir conditions. The main objective of this research work is to study of the effect of asphaltene and its type on the IFT behavior of the oil-CO2 system. The IFT between pure CO2 and a model oil both with and without asphaltene was measured using an axisymmetric drop shape... 

    Experimental investigation on the effect of asphaltene types on the interfacial tension of co2-hydrocarbon systems

    , Article Energy and Fuels ; Volume 29, Issue 12 , November , 2015 , Pages 7941-7947 ; 08870624 (ISSN) Mahdavi, E ; Zebarjad, F. S ; Ayatollahi, S ; Taghikhani, V ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    Interfacial tension (IFT) is known as the critical parameter affecting the efficiency of CO2 flooding during the enhanced oil recovery (EOR) process. Besides, the asphaltene precipitation phenomenon is reported as the most significant problem during CO2 injection into asphaltenic oil reservoirs. Accordingly, it is important to examine the effect of asphaltene precipitation on the IFT behavior of the oil-CO2 system at reservoir conditions. The main objective of this research work is to study of the effect of asphaltene and its type on the IFT behavior of the oil-CO2 system. The IFT between pure CO2 and a model oil both with and without asphaltene was measured using an axisymmetric drop shape... 

    Free fall and controlled gravity drainage processes in fractured porous media: Laboratory and modelling investigation

    , Article Canadian Journal of Chemical Engineering ; Volume 93, Issue 12 , October , 2015 , Pages 2286-2297 ; 00084034 (ISSN) Saedi, B ; Ayatollahi, S ; Masihi, M ; Sharif University of Technology
    Wiley-Liss Inc  2015
    Abstract
    Gravity drainage is known to be one of the most effective methods for oil recovery in fractured reservoirs. In this study, both free fall and controlled gravity drainage processes were studied using a transparent fractured experimental model, followed by modelling using commercial CFD software. The governing equations were employed based on the Darcy and mass conservation laws and partial pressure formulation. Comprehensive examination was done on variables such as fluid saturation, velocity, and pressure distribution in the matrix and fracture, as well as fluid front level and production rate. Additionally, effects of the model parameters on the gravity drainage performance were... 

    Green balance software: An integrated model for screening of CO2-EOR and CCS projects

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 37, Issue 14 , 2015 , Pages 1479-1486 ; 15567036 (ISSN) Ghoodjani, E ; Bolouri, S. H ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    An integrated model is proposed for simultaneous study of CO2-flood enhanced oil recovery and sequestration in both technical and economic points of view. Based on this model, Green Balance software is developed for quick estimation of performance and profitability of CO2-flood enhanced oil recovery and carbon capture and storage projects. This software benefits users to do sensitivity analyses in extended times, easily and quickly. Several sensitivity analyses were done and effects of reservoir parameters and economic expenditures and taxes were studied. Among all affecting parameters, the role of tax per CO2 emission is the most important one. The use of... 

    Evaluation of interfacial mass transfer coefficient as a function of temperature and pressure in carbon dioxide/normal alkane systems

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 51, Issue 4 , April , 2015 , Pages 477-485 ; 09477411 (ISSN) Nikkhou, F ; Keshavarz, P ; Ayatollahi, S ; Raoofi Jahromi, I ; Zolghadr, A ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    CO2 gas injection is known as one of the most popular enhanced oil recovery techniques for light and medium oil reservoirs, therefore providing an acceptable mass transfer mechanism for CO2–oil systems seems necessary. In this study, interfacial mass transfer coefficient has been evaluated for CO2–normal heptane and CO2–normal hexadecane systems using equilibrium and dynamic interfacial tension data, which have been measured using the pendant drop method. Interface mass transfer coefficient has been calculated as a function of temperature and pressure in the range of 313–393 K and 1.7–8.6 MPa, respectively. The results showed that the interfacial resistance is a parameter that can control... 

    Surfactant effects on the efficiency of oil sweeping from the dead ends: Numerical simulation and experimental investigation

    , Article Chemical Engineering Research and Design ; Volume 94 , 2015 , Pages 173-181 ; 02638762 (ISSN) Kamyabi, A ; Ramazani, S. A. A ; Kamyabi, M ; Sharif University of Technology
    Institution of Chemical Engineers  2015
    Abstract
    Highlights: The objective of this work is to investigate the effects of the surfactants on the oil extraction from the dead ends through the numerical simulations and experimental evidences. The volume of fluid approach in the frame of the finite volume method has been used for numerical simulations in 2-D domain and experimental flooding tests have been done using a glassy micro-model. The effects of the water-oil, water-wall and oil-wall interfacial tensions have been investigated numerically and some results are compared to experimental flooding results. Simulations have been done in the cases of water-wet, neutralized-wet and oil-wet micro-models also. The numerical results show that in... 

    Phase behavior and rheology of emulsions in an alkaline/cosolvent/crude oil/brine system

    , Article Petroleum Science and Technology ; Volume 34, Issue 3 , 2016 , Pages 207-215 ; 10916466 (ISSN) Bahman Abadi, H ; Hemmati, M ; Shariat Panahi, H ; Masihi, M ; Karam Beigi, M. S ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    Phase behavior of active crude oil/alkaline was systematically studied in the presence of cosolvents. For this purpose, several factors have been considered: alkaline concentration, oil concentration, and type of brine. The best composition was used to generate emulsion for rheology and displacement tests. Furthermore, precipitation of alkaline was eliminated by its synergy with EDTA. Next, rheology of emulsion was analyzed by which a Power law model was developed that indicates non-Newtonian behavior of emulsion. Moreover, the viscosity of emulsion was reduced by the addition of cosolvent as well as by the increase of alkaline concentration. Finally, the best formulation (containing... 

    Study the effect of connectivity between two wells on secondary recovery efficiency using percolation approach

    , Article 15th European Conference on the Mathematics of Oil Recovery, ECMOR 2016, 29 August 2016 through 1 September 2016 ; 2016 ; 9462821933 (ISBN); 9789462821934 (ISBN) Sadeghnejad, S ; Masihi, M ; King, P. R ; Gago, P. A ; Sharif University of Technology
    European Association of Geoscientists and Engineers, EAGE  2016
    Abstract
    Estimating available hydrocarbon to be produced during secondary oil recovery is an ongoing activity in field development. The primary plan is normally scheduled during early stage of field's life through master development plan studies. During this period, due to the lake of certain data, estimation of the field efficiency is usually based on rules of thumb and not detailed field characterization. Hence, there is a great motivation to produce simpler physically-based methodologies. The minimum necessity inputs of percolation approach make it a useful tool for foration performance prediction. This approach enables us to attain a better assessment of the efficiency of secondary recovery... 

    Low salinity water injectionat different reservoir rocks: Similarities and differences

    , Article Special Topics and Reviews in Porous Media ; Volume 7, Issue 1 , 2016 , Pages 87-97 ; 21514798 (ISSN) Hassani, K ; Rostami, B ; Ayatollahi, S ; Yassin, M. R ; Sharif University of Technology
    Begell House Inc  2016
    Abstract
    A literature review of laboratory and field scale studies on low salinity water (LSW) injection showed that the salinity and composition of injected water can have a significant impact on oil recovery. Historically, extensive research has been completed to understand the mechanisms and factors affecting LSW injection. However, although numerous mechanisms have been proposed to describe the interactions in the target process, none have been widely accepted. In this study, waterflooding tests were used to investigate the advantages, disadvantages, and effect of LSW injection. In laboratory tests, two different brines and crude oil of one of Iran's southern reservoirs were used to assess the...